On pseudo-Mittag-Leffler functions and applications

被引:8
作者
Agahi, Hamzeh [1 ]
Alipour, Mohsen [1 ]
机构
[1] Babol Noshirvani Univ Technol, Fac Basic Sci, Dept Math, POB 47148-71167, Babol Sar, Iran
关键词
Distribution of zeros; Pseudo-Mittag-Leffler functions; Pseudo-fractional derivative; LYAPUNOV-TYPE INEQUALITY;
D O I
10.1016/j.fss.2016.11.011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Mittag-Leffer function and related distribution are valuable in statistics, applied mathematics and lifetime data analysis. In this paper, we introduce the concept of pseudo-Mittag-Leffler functions. Then, we discuss the pseudo-fractional boundary value problems in two classes of pseudo-Caputo fractional derivative and pseudo-Riemann-Liouville fractional derivative to get the pseudo-integral inequalities of Lyapunov-type. Also, as an application, we obtain the nonexistence of real zeros of pseudo-Mittag-Leffler functions. Our results generalize the corresponding ones in the literature. Finally, two open problems for further investigations are given. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 28 条
[1]   Chebyshev type inequalities for pseudo-integrals [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Ouyang, Yao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2737-2743
[2]   On the concept of solution for fractional differential equations with uncertainty [J].
Agarwal, Ravi P. ;
Lakshmikantham, V. ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2859-2862
[3]   Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices [J].
Alipour, Mohsen ;
Rostamy, Davood ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (16) :2523-2540
[4]  
[Anonymous], 2006, Journal of the Electrochemical Society
[5]   The theory of pseudo-linear operators [J].
Bede, Barnabas ;
O'Regan, Donal .
KNOWLEDGE-BASED SYSTEMS, 2013, 38 :19-26
[6]   On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function [J].
Ferreira, Rui A. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) :1058-1063
[7]   A Lyapunov-type inequality for a fractional boundary value problem [J].
Ferreira, Rui A. C. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) :978-984
[8]  
Kuich W., 1986, Semirings, Automata, Languages, DOI [10.1007/978-3-642-69959-7, DOI 10.1007/978-3-642-69959-7]
[9]   Fractional Poisson process [J].
Laskin, Nick .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2003, 8 (3-4) :201-213
[10]  
Lyapunov A.M. A. M., 1907, Ann. Fac. Sci. Univ. Toulouse, V2, P27