Superior performance with sCMOS over EMCCD in super-resolution optical fluctuation imaging

被引:8
作者
Chen, Xuanze [1 ,2 ]
Zeng, Zhiping [1 ]
Li, Rongqin [2 ]
Xue, Boxin [2 ]
Xi, Peng [1 ]
Sun, Yujie [2 ]
机构
[1] Peking Univ, Coll Engn, Dept Biomed Engn, 5 Yiheyuan Rd Haidian Dist, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Membrane Biol, Biodynam Opt Imaging Ctr BIOPIC, Sch Life Sci, 5 Yiheyuan Rd Haidian Dist, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
super-resolution optical fluctuation imaging; scientific-grade complementary metal oxide semiconductor; electron multiplying charge coupled device; super-resolution microscopy; STRUCTURED-ILLUMINATION MICROSCOPY; SOFI; RESOLUTION; NANOSCOPY; CAMERAS; PROTEIN; NOISE; STORM; LIMIT;
D O I
10.1117/1.JBO.21.6.066007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Super-resolution optical fluctuation imaging (SOFI) is a fast and low-cost live-cell optical nanoscopy for extracting subdiffraction information from the statistics of fluorescence intensity fluctuation. As SOFI is based on the fluctuation statistics, rather than the detection of single molecules, it poses unique requirements for imaging detectors, which still lack a systematic evaluation. Here, we analyze the influences of pixel sizes, frame rates, noise levels, and different gains in SOFI with simulations and experimental tests. Our analysis shows that the smaller pixel size and faster readout speed of scientific-grade complementary metal oxide semiconductor (sCMOS) enables SOFI to achieve high spatiotemporal resolution with a large field-of-view, which is especially beneficial for live-cell super-resolution imaging. Overall, as the performance of SOFI is relatively insensitive to the signal-to-noise ratio (SNR), the gain in pixel size and readout speed exceeds the loss in SNR, indicating sCMOS is superior to electron multiplying charge coupled device in context to SOFI in many cases. Super-resolution imaging of cellular microtubule structures with high-order SOFI is experimentally demonstrated at large field-of-view, taking advantage of the large pixel number and fast frame rate of sCMOS cameras. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:10
相关论文
共 50 条
[31]   Super-resolution Microscopy for Biological Imaging [J].
Yang, Zhigang ;
Samanta, Soham ;
Yan, Wei ;
Yu, Bin ;
Qu, Junle .
OPTICAL IMAGING IN HUMAN DISEASE AND BIOLOGICAL RESEARCH, 2021, 1355 :23-43
[32]   Super-Resolution Optical Subtraction Microscopy Using Optical Scattering Imaging [J].
Zhou Qian ;
Yu Jian-Qiang ;
Zhao Li-Bo ;
Li De-Sheng ;
Wu Kui ;
Zhu Jian-Hua ;
Yuan Jing-He ;
Fang Xiao-Hong .
ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (05) :1123-1128
[33]   Experimental Combination of Super-Resolution Optical Fluctuation Imaging with Structured Illumination Microscopy for Large Fields-of-View [J].
Descloux, Adrien C. ;
Grussmayer, Kristin S. ;
Navikas, Vytautas ;
Mahecic, Dora ;
Manley, Suliana ;
Radenovic, Aleksandra .
ACS PHOTONICS, 2021, 8 (08) :2440-2449
[34]   Self-Blinking Dyes Unlock High-Order and Multiplane Super-Resolution Optical Fluctuation Imaging [J].
Grussmayer, Kristin ;
Lukes, Tomas ;
Lasser, Theo ;
Radenovic, Aleksandra .
ACS NANO, 2020, 14 (07) :9156-9165
[35]   Widefield scanning imaging with optical super-resolution [J].
Li, Yanghui ;
Shi, Zhaoyi ;
Shuai, Shaojie ;
Wang, Le .
JOURNAL OF MODERN OPTICS, 2015, 62 (14) :1193-1197
[36]   Super-resolution imaging by anticorrelation of optical intensities [J].
Meng, Shao-Ying ;
Sha, Ying-Hui ;
Fu, Qiang ;
Bao, Qian-Qian ;
Shi, Wei-Wei ;
Li, Guo-Dong ;
Chen, Xi-Hao ;
Wu, Ling-An .
OPTICS LETTERS, 2018, 43 (19) :4759-4762
[37]   Optical super-resolution imaging: A review and perspective [J].
Aflalo, Kobi ;
Gao, Peng ;
Trivedi, Vismay ;
Sanjeev, Abhijit ;
Zalevsky, Zeev .
OPTICS AND LASERS IN ENGINEERING, 2024, 183
[38]   Microsphere assisted optical super-resolution imaging with narrowband illumination [J].
Liu, Chang ;
Ye, Anpei .
OPTICS COMMUNICATIONS, 2021, 485
[39]   Super-resolution acoustic imaging [J].
Chen, Wangqiao ;
Jiang, Hanbo ;
Huang, Xun .
APPLIED PHYSICS LETTERS, 2022, 120 (11)
[40]   Super-Resolution Imaging with Graphene [J].
Jiang, Xiaoxiao ;
Kong, Lu ;
Ying, Yu ;
Gu, Qiongchan ;
Lv, Jiangtao ;
Dai, Zhigao ;
Si, Guangyuan .
BIOSENSORS-BASEL, 2021, 11 (09)