Fatigue Behaviour of Additively Manufactured Ti-6Al-4V

被引:58
|
作者
Sterling, Amanda [1 ]
Shamsaei, Nima [1 ,2 ]
Torries, Brian [1 ]
Thompson, Scott M. [1 ,2 ]
机构
[1] Mississippi State Univ, Dept Mech Engn, POB 9552, Mississippi State, MS 39762 USA
[2] Mississippi State Univ, CAVS, Mississippi State, MS 39762 USA
关键词
Laser Engineered Net Shaping (LENS); Direct Laser Deposition; Fatigue; Ti-6Al-4V; Additive Manufacturing; Defects;
D O I
10.1016/j.proeng.2015.12.632
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Fatigue behaviour of Ti-6Al-4V specimens additively-manufactured via Laser Engineered Net Shaping (LENS) is investigated in this study. Additive manufacturing provides the opportunity to fabricate complex geometries layer-by-layer from 3D computer aided drawings. As the mechanical behaviour of metallic materials depends on their microstructure, which is affected by the time-temperature history, additive-manufactured components are expected to have different properties than those of their wrought counterparts. Ti-6Al-4V rods were fabricated by LENS using two different sets of process parameters and machined into 'dog-bone' fatigue specimens with dimensions in conformance to ASTM standards. The fatigue behaviour and microstructural features of the LENS Ti-6Al-4V samples were characterized and compared with wrought Ti-6Al-4V. Fractography of the fractured specimen surfaces was performed using Scanning Electron Microscopy (SEM) to determine the failure mechanism and realize the effects of porosity on fatigue resistance and data scatter of LENS Ti-6Al-4V. The fatigue lives of the LENS Ti-6Al-4V materials were found to be lower than those of the wrought Ti-6Al-4V, and driven by the porosity and microstructure of the samples. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:576 / 589
页数:14
相关论文
共 50 条
  • [1] A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V
    Fei Cao
    Tiantian Zhang
    Matthew A. Ryder
    Diana A. Lados
    JOM, 2018, 70 : 349 - 357
  • [2] A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V
    Cao, Fei
    Zhang, Tiantian
    Ryder, Matthew A.
    Lados, Diana A.
    JOM, 2018, 70 (03) : 349 - 357
  • [3] On the damping and fatigue characterization of additively manufactured Ti-6Al-4V
    Wilson, Peyton J.
    Azizian-Farsani, Elaheh
    Paul, Mikyle
    Khonsari, Michael M.
    Shao, Shuai
    Shamsaei, Nima
    ADDITIVE MANUFACTURING LETTERS, 2024, 11
  • [4] Fatigue Assessment of Wire and Arc Additively Manufactured Ti-6Al-4V
    Springer, Sebastian
    Leitner, Martin
    Gruber, Thomas
    Oberwinkler, Bernd
    Lasnik, Michael
    Grun, Florian
    METALS, 2022, 12 (05)
  • [5] Utilization of a microstructure sensitive fatigue model for additively manufactured Ti-6Al-4V
    Torries, Brian
    Sterling, Amanda J.
    Shamsaei, Nima
    Thompson, Scott M.
    Daniewicz, Steve R.
    RAPID PROTOTYPING JOURNAL, 2016, 22 (05) : 817 - 825
  • [6] Factors affecting the fatigue strength of additively manufactured Ti-6Al-4V parts
    Johnsen, Anders Rygg
    Petersen, Jan Erik
    Pedersen, Mikkel Melters
    Yildirim, Halid Can
    WELDING IN THE WORLD, 2023, 68 (2) : 361 - 409
  • [7] Factors affecting the fatigue strength of additively manufactured Ti-6Al-4V parts
    Anders Rygg Johnsen
    Jan Erik Petersen
    Mikkel Melters Pedersen
    Halid Can Yıldırım
    Welding in the World, 2024, 68 : 361 - 409
  • [8] Microstructure effects on fatigue crack growth in additively manufactured Ti-6Al-4V
    VanSickle, Raeann
    Foehring, David
    Chew, Huck Beng
    Lambros, John
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 795
  • [9] Hot Isostatic Pressing for Fatigue Critical Additively Manufactured Ti-6Al-4V
    Moran, Terrence P.
    Carrion, Patricio E.
    Lee, Seungjong
    Shamsaei, Nima
    Phan, Nam
    Warner, Derek H.
    MATERIALS, 2022, 15 (06)
  • [10] A survey of fatigue properties from wrought and additively manufactured Ti-6Al-4V
    Rao, Jeremy H.
    Stanford, Nikki
    MATERIALS LETTERS, 2021, 283