Dressing for a Novel Integrable Generalization of the Nonlinear Schrodinger Equation

被引:107
作者
Lenells, Jonatan [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
Integrable system; Inverse spectral theory; Dressing method; Solitons; TRANSFORMATION; SOLITONS;
D O I
10.1007/s00332-010-9070-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We implement the dressing method for a novel integrable generalization of the nonlinear Schrodinger equation. As an application, explicit formulas for the N-soliton solutions are derived. As a by-product of the analysis, we find a simplification of the formulas for the N-solitons of the derivative nonlinear Schrodinger equation given by Huang and Chen.
引用
收藏
页码:709 / 722
页数:14
相关论文
共 11 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS [J].
FOKAS, AS .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) :145-150
[3]   ALFVEN SOLITONS [J].
HUANG, NN ;
CHEN, ZY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (04) :439-453
[4]   EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) :798-801
[6]   An integrable generalization of the nonlinear Schrodinger equation on the half-line and solitons [J].
Lenells, J. ;
Fokas, A. S. .
INVERSE PROBLEMS, 2009, 25 (11)
[7]   On a novel integrable generalization of the nonlinear Schrodinger equation [J].
Lenells, J. ;
Fokas, A. S. .
NONLINEARITY, 2009, 22 (01) :11-27
[8]   Exactly Solvable Model for Nonlinear Pulse Propagation in Optical Fibers [J].
Lenells, Jonatan .
STUDIES IN APPLIED MATHEMATICS, 2009, 123 (02) :215-232
[9]  
Novikov S. P., 1984, THEORY SOLITONS INVE
[10]  
TSUCHIDA T, 2010, JMP IN PRESS