Regulating lithium nucleation and growth by zinc modified current collectors

被引:29
作者
Zhang, Na [1 ]
Yu, Seung-Ho [1 ,2 ]
Abruna, Hector D. [1 ]
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Baker Lab, Ithaca, NY 14853 USA
[2] Korea Univ, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
基金
美国国家科学基金会;
关键词
lithium metal anode; lithium dendrite; current collector; zinc layer; INTERFACIAL LAYER; METAL ANODES; ELECTROLYTES; ELECTRODES; DEPOSITION; ENCAPSULATION; MECHANISM; BEHAVIOR; NITRATE; IMPACT;
D O I
10.1007/s12274-019-2567-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal is commonly regarded as the "Holy Grail" anode material for high energy density rechargeable batteries. However, the uncontrollable growth of Li dendrites has posed safety concerns and thus greatly hindered its large-scale application. Here we have modified the surface of a commercial anode current collector, Cu foil, with a thin layer of Zn by a facile electroplating method, in order to regulate the Li nucleation and the following growth processes. Because of the formation of a solid solution buffer layer and Li-Zn alloy phases, the Li nucleation overpotential was dramatically reduced, realizing a uniform Li nucleation and a smooth Li plating morphology. As a result, significantly improved long-term cycling performance with a high Coulombic efficiency was achieved by the lithiophilic Zn coated Cu foil as a current collector. Full cells of Li-LiFePO4 and Li-S using the Li deposited on the Zn modified Cu as the anode, showed increased capacity with low voltage hysteresis and greatly enhanced cycling stability, ascribed to the uniform Li deposition and formation of a stable SEI layer. This work demonstrates the feasibility of employing lithiophilic modified Cu foils as Li metal current collectors for practical applications.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 57 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   THE CORRELATION BETWEEN SURFACE-CHEMISTRY, SURFACE-MORPHOLOGY, AND CYCLING EFFICIENCY OF LITHIUM ELECTRODES IN A FEW POLAR APROTIC SYSTEMS [J].
AURBACH, D ;
GOFER, Y ;
LANGZAM, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (11) :3198-3205
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[5]   Predicting and Extending the Lifetime of Li-Ion Batteries [J].
Burns, J. C. ;
Kassam, Adil ;
Sinha, N. N. ;
Downie, L. E. ;
Solnickova, Lucie ;
Way, B. M. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) :A1451-A1456
[6]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[7]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[8]   Sulfur-nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode [J].
Chen, Mei ;
Zheng, Jianhui ;
Sheng, Ouwei ;
Jin, Chengbin ;
Yuan, Huadong ;
Liu, Tiefeng ;
Liu, Yujing ;
Wang, Yao ;
Nai, Jianwei ;
Tao, Xinyong .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (31) :18267-18274
[9]   Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Yang, Shu-Ting ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2018, 10 :199-205
[10]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473