Stability of solutions to impulsive differential equations in critical cases

被引:7
作者
Dvirnyi, A. I. [1 ]
Slyn'ko, V. I. [2 ]
机构
[1] Acad Fire Safety, Cherkassy, Ukraine
[2] Timoshenko Inst Mech, Kiev, Ukraine
关键词
impulsive equation; critical case; Lyapunov stability; SYSTEM;
D O I
10.1134/S003744660601006X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a new approach to constructing a piecewise differentiable Lyapunov function for some classes of nonlinear nonstationary systems of impulsive differential equations in the critical case. This approach allows us to obtain new sufficient conditions for the Lyapunov stability of solutions to this class of systems.
引用
收藏
页码:54 / 62
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 1995, World Sci. Ser. Nonlinear Sci., Ser. A., DOI DOI 10.1142/2892
[2]  
ARNOLD VI, 1985, DYNAMICAL SYSTEMS, V1, P7
[3]  
Babenko S.V., 2008, DOPOV NATS AKAD NAUK, P46
[4]  
Chernikova O.S., 1982, Ukr. Mat. Mag, V34, P601
[5]   Necessary and sufficient stability conditions for invariant sets of nonlinear impulsive systems [J].
Gladilina, R. I. ;
Ignat'ev, A. O. .
INTERNATIONAL APPLIED MECHANICS, 2008, 44 (02) :228-237
[6]  
HSU CS, 1971, PAP ASME, V19
[7]   Asymptotic stability and instability with respect to part of variables for solutions to impulsive systems [J].
Ignat'ev, A. O. .
SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (01) :102-108
[8]  
Lakshmikantham V., 1989, World scientific, V6
[9]  
LIU X, 2003, ADV STABILITY THEORY, V13, P321
[10]   Stability of a nonlinear impulsive system [J].
Martynyuk, AA ;
Slyn'ko, VI .
INTERNATIONAL APPLIED MECHANICS, 2004, 40 (02) :231-239