Innate-like NKp30+CD8+ T cells armed with TCR/CAR target tumor heterogeneity

被引:4
|
作者
Correia, Margareta P. [1 ,2 ,3 ]
Stojanovic, Ana [1 ]
Wels, Winfried S. [4 ,5 ,6 ,7 ]
Cerwenka, Adelheid [1 ,8 ]
机构
[1] Heidelberg Univ, Med Fac Mannheim, Mannheim Inst Innate Immunosci MI3, Dept Immunobiochem, Mannheim, Germany
[2] Porto Comprehens Canc Ctr Porto CCC, Canc Biol & Epigenet Grp, Res Ctr IPO Porto CIIPOP RISE CI IPOP,Hlth Res Ne, Canc Biol & Epigenet Grp,Portuguese Oncol Inst Po, Porto, Portugal
[3] Univ Porto ICBAS UP, Sch Med & Biomed Sci, Dept Pathol & Mol Immunol, Porto, Portugal
[4] Georg Speyer Haus, Inst Tumor Biol & Expt Therapy, Frankfurt, Germany
[5] Goethe Univ, Frankfurt Canc Inst, Frankfurt, Germany
[6] German Canc Res Ctr, Heidelberg, Germany
[7] German Canc Consortium DKTK, Partner Site Frankfurt Mainz, Frankfurt, Germany
[8] Heidelberg Univ, Med Fac Mannheim, European Ctr Angiosci ECAS, Mannheim, Germany
来源
ONCOIMMUNOLOGY | 2021年 / 10卷 / 01期
关键词
CD8(+) T cells; NKp30; innate T cells; CAR T cells; TCR-transduced T cells; immunotherapy; CANCER STEM-CELLS; HLA-E; SURFACE-MOLECULE; NK CELLS; CLASS-I; RECEPTOR; EXPRESSION; B7-H6; HER2; LYMPHOCYTES;
D O I
10.1080/2162402X.2021.1973783
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Intratumoral heterogeneity is frequently associated with tumor immune escape, with MHC-class I and antigen expression loss rendering tumor cells invisible to T cell killing, representing a major challenge for the design of successful adoptive transfer protocols for cancer immunotherapy. While CD8(+) T cell recognition of tumor cells is based on the detection of MHC-peptide complexes via specific T cell receptors (TCRs), Natural Killer (NK) cells detect tumor-associated NK ligands by an array of NK receptors. We have recently identified a population of innate-like CD8(+) T cells marked by the expression of NKp30, a potent natural cytotoxicity activating NK receptor, whose tumor ligand, B7H6, is frequently upregulated on several cancer types. Here, we harnessed the dual-recognition potential of NKp30(+)CD8(+) T cells, by arming these cells with TCRs or chimeric antigen receptors (CARs) targeting Epidermal Growth Factor Receptor 2 (ErbB2, or HER2), a tumor-associated target overexpressed in several malignancies. HER2-specific NKp30(+)CD8(+) T cells killed not only HER2-expressing target cell lines, but also eliminated tumor cells in the absence of MHC-class I or antigen expression, making them especially effective in eliminating heterogeneous tumor cell populations. Our results show that NKp30(+)CD8(+) T cells equipped with a specific TCR or CAR display a dual capacity to recognize and kill target cells, combining the anti-tumor activity of both CD8(+) T and NK cells. This dual-recognition capacity allows these effector cells to target tumor heterogeneity, thus improving therapeutic strategies against tumor escape.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] CD30-mediated apoptosis in murine CD8 T cells after cessation of TCR signals.
    Telford, WG
    Miller, RA
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 1997, 99 (01) : 1557 - 1557
  • [42] STEAP, a prostate tumor antigen, is a target of human CD8+ T cells
    Pedro M. S. Alves
    Olivier Faure
    Stéphanie Graff-Dubois
    Sebastien Cornet
    Irena Bolonakis
    David-Alexandre Gross
    Isabelle Miconnet
    Salem Chouaib
    Karim Fizazi
    Jean Charles Soria
    François A. Lemonnier
    Kostas Kosmatopoulos
    Cancer Immunology, Immunotherapy, 2006, 55 : 1515 - 1523
  • [43] STEAP, a prostate tumor antigen, is a target of human CD8+ T cells
    Alves, Pedro M. S.
    Faure, Olivier
    Graff-Dubois, Stephanie
    Cornet, Sebastien
    Bolonakis, Irena
    Gross, David-Alexandre
    Miconnet, Isabelle
    Chouaib, Salem
    Fizazi, Karim
    Soria, Jean Charles
    Lemonnier, Francois A.
    Kosmatopoulos, Kostas
    CANCER IMMUNOLOGY IMMUNOTHERAPY, 2006, 55 (12) : 1515 - 1523
  • [44] IL-12 derived from CD8α+ dendritic cells drives the differentiation of innate-like T-bethigh memory-phenotype CD4+ T lymphocytes in steady state
    Kawabe, Takeshi
    Yi, Jaeu
    Kawajiri, Akihisa
    Hilligan, Kerry
    Fang, Difeng
    Ishii, Naoto
    Yamane, Hidehiro
    Zhu, Jinfang
    Jankovic, Dragana
    Kim, Kwang Soon
    Trinchieri, Giorgio
    Sher, Alan
    JOURNAL OF IMMUNOLOGY, 2020, 204 (01):
  • [45] TCR repertoire intratumor heterogeneity of CD4+ and CD8+ T cells in centers and margins of localized lung adenocarcinomas
    Zhang, Chaoting
    Ding, Huirong
    Huang, Hongying
    Palashati, Heyilimu
    Miao, Yu
    Xiong, Hongchao
    Lu, Zheming
    INTERNATIONAL JOURNAL OF CANCER, 2019, 144 (04) : 818 - 827
  • [46] Autoreactive CD1b-restricted T cells: a new innate-like T-cell population that contributes to immunity against infection
    Li, Sha
    Choi, Hak-Jong
    Felio, Kyrie
    Wang, Chyung-Ru
    BLOOD, 2011, 118 (14) : 3870 - 3878
  • [47] THE IMPACT OF PD-1+ INNATE-LIKE CD8+T CELLS ON THE HBSAG REDUCTION IN ACTIVE CHRONIC HEPATITIS B PATIENTS RECEIVING NUCLEOS(T) IDE ANALOGUE THERAPY
    Jeng, Rachel Wen-Juei
    Huang, Hsiang-Wei
    Lin, Chia-Wei
    Fan, Jian He
    Liu, Yen-Chun
    Ku, Wei-Ting
    Wu, Cheng-Heng
    Huang, Chien-Hao
    Lin, Yung-Chang
    Lin, Chun Yen
    HEPATOLOGY, 2024, 80 : S755 - S756
  • [48] Autoreactive CD8 T cells in NOD mice exhibit phenotypic heterogeneity but restricted TCR gene usage
    Kasmani, Moujtaba Y.
    Ciecko, Ashley E.
    Brown, Ashley K.
    Petrova, Galina
    Gorski, Jack
    Chen, Yi-Guang
    Cui, Weiguo
    LIFE SCIENCE ALLIANCE, 2022, 5 (10)
  • [49] A distinct human NKp30+FcεRIγ+CD8+T cell population exhibiting high NK-like anti-tumor potential
    Correia, Margareta P.
    Stojanovic, Ana
    Bauer, Katharina
    Juraeva, Dilafruz
    Tykocinski, Lars
    Lorenz, Hanns-Martin
    Brors, Benedikt
    Cerwenka, Adelheid
    JOURNAL OF IMMUNOLOGY, 2018, 200 (01):
  • [50] Innate-like CD8 T cells in the teleost olfactory-CNS axis express NK cell markers and mount rapid polyclonal responses to viral antigens
    Salinas, Irene
    Das, Pankoj Kumar
    Magadan, Susana
    JOURNAL OF IMMUNOLOGY, 2020, 204 (01):