Anomalous Impact in Reaction-Diffusion Financial Models

被引:26
|
作者
Mastromatteo, I. [1 ]
Toth, B. [2 ]
Bouchaud, J-P. [2 ]
机构
[1] Ecole Polytech, Ctr Math Appl, CNRS, UMR7641, F-91128 Palaiseau, France
[2] Capital Fund Management, F-75007 Paris, France
关键词
2-SPECIES ANNIHILATION; REACTION FRONT; ONE-DIMENSION; STEADY-STATE; FLUCTUATIONS; MARKET;
D O I
10.1103/PhysRevLett.113.268701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the reaction-diffusion model A + B -> empty set in order to study the impact of an excess of A (or B) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists
    Sha, Jing
    Lee, Jin-Kyun
    Kang, Shuhui
    Prabhu, Vivek M.
    Soles, Christopher L.
    Bonnesen, Peter V.
    Ober, Christopher K.
    CHEMISTRY OF MATERIALS, 2010, 22 (10) : 3093 - 3098
  • [32] Effect of noise on front propagation in reaction-diffusion equations of KPP type
    Mueller, Carl
    Mytnik, Leonid
    Quastel, Jeremy
    INVENTIONES MATHEMATICAE, 2011, 184 (02) : 405 - 453
  • [33] A robust and efficient method for steady state patterns in reaction-diffusion systems
    Lo, Wing-Cheong
    Chen, Long
    Wang, Ming
    Nie, Qing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (15) : 5062 - 5077
  • [34] ON A NONLOCAL REACTION-DIFFUSION PROBLEM ARISING FROM THE MODELING OF PHYTOPLANKTON GROWTH
    Du, Yihong
    Hsu, Sze-Bi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (03) : 1305 - 1333
  • [35] Global stability of the steady states of an SIS epidemic reaction-diffusion model
    Peng, Rui
    Liu, Shengqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 239 - 247
  • [36] Using adaptive proper orthogonal decomposition to solve the reaction-diffusion equation
    Singer, Michael A.
    Green, William H.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (02) : 272 - 279
  • [37] ON A REACTION-DIFFUSION MODEL FOR STERILE INSECT RELEASE METHOD WITH RELEASE ON THE BOUNDARY
    Li, Xin
    Zou, Xingfu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (07): : 2509 - 2522
  • [38] FURTHER STUDIES OF A REACTION-DIFFUSION SYSTEM FOR AN UNSTIRRED CHEMOSTAT WITH INTERNAL STORAGE
    Hsu, Sze-Bi
    Shi, Junping
    Wang, Feng-Bin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (10): : 3169 - 3189
  • [39] Coexistence solutions for a reaction-diffusion system of un-stirred chemostat model
    Zheng, SN
    Liu, J
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) : 579 - 590
  • [40] Cellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches
    Asgari, Yazdan
    Ghaemi, Mehrdad
    Mahjani, Mohammad Ghasem
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2011, 30 (01): : 143 - 150