Anomalous Impact in Reaction-Diffusion Financial Models

被引:26
|
作者
Mastromatteo, I. [1 ]
Toth, B. [2 ]
Bouchaud, J-P. [2 ]
机构
[1] Ecole Polytech, Ctr Math Appl, CNRS, UMR7641, F-91128 Palaiseau, France
[2] Capital Fund Management, F-75007 Paris, France
关键词
2-SPECIES ANNIHILATION; REACTION FRONT; ONE-DIMENSION; STEADY-STATE; FLUCTUATIONS; MARKET;
D O I
10.1103/PhysRevLett.113.268701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the reaction-diffusion model A + B -> empty set in order to study the impact of an excess of A (or B) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Steady state solutions of a reaction-diffusion system modeling chemotaxis
    Wang, G
    Wei, J
    MATHEMATISCHE NACHRICHTEN, 2002, 233 : 221 - 236
  • [22] Stationary Pattern of a Reaction-Diffusion Mussel-Algae Model
    Shen, Zuolin
    Wei, Junjie
    BULLETIN OF MATHEMATICAL BIOLOGY, 2020, 82 (04)
  • [23] Properties of the asymptotic nA + mB → C reaction-diffusion fronts
    J. Magnin
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 17 : 673 - 678
  • [24] Pattern formation in a reaction-diffusion parasite-host model
    Zhang, Baoxiang
    Cai, Yongli
    Wang, Bingxian
    Wang, Weiming
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 525 : 732 - 740
  • [25] Stability and Spectral Comparison of a Reaction-Diffusion System with Mass Conservation
    Latos, Evangelos
    Morita, Yoshihisa
    Suzuki, Takashi
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) : 823 - 844
  • [26] Computing macroscopic reaction rates in reaction-diffusion systems using Monte Carlo simulations
    Swailem, Mohamed
    Tauber, Uwe C.
    PHYSICAL REVIEW E, 2024, 110 (01)
  • [27] A NUMERICAL ANALYSIS OF A REACTION-DIFFUSION SYSTEM MODELING THE DYNAMICS OF GROWTH TUMORS
    Anaya, Veronica
    Bendahmane, Mostafa
    Sepulveda, Mauricio
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (05) : 731 - 756
  • [28] Stochastic self-assembly of reaction-diffusion patterns in synaptic membranes
    Law, Everest
    Li, Yiwei
    Kahraman, Osman
    Haselwandter, Christoph A.
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [29] Anomalous Price Impact and the Critical Nature of Liquidity in Financial Markets
    Toth, B.
    Lemperiere, Y.
    Deremble, C.
    de Lataillade, J.
    Kockelkoren, J.
    Bouchaud, J. -P.
    PHYSICAL REVIEW X, 2011, 1 (02): : 1 - 11
  • [30] Effects of transport memory in wave fronts in a bistable reaction-diffusion system
    Ziem, D. C. Bitang A.
    Mvogo, A.
    Kofane, T. C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 517 : 36 - 46