A Practical Anisotropic Vector Hysteresis Model Based on Play Hysterons

被引:5
作者
Lin, D. [1 ]
Zhou, P. [1 ]
Rahman, M. A. [2 ]
机构
[1] Ansys Inc, Canonsburg, PA 15317 USA
[2] Mem Univ Newfoundland, St John, NF A1B 3X5, Canada
关键词
Anisotropic; finite-element methods; hysteresis; magnetic materials; modeling; OPERATOR; STOP;
D O I
10.1109/TMAG.2017.2711782
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An anisotropic vector hysteresis model based on the improved isotropic vector play operator has been presented to predict the magnetization behavior of anisotropic hysteresis materials. The required parameters can be identified from the major hysteresis loops in all principal axes, which can be easily measured, or are directly available from magnetic material manufacturers. The presented model, which has been successfully implemented in 2-D and 3-D transient finite-element analysis, is validated by numerical experiments and measured data cited from TEAM problem 32, and is applied to simulate a synchronous reluctance motor with an axially laminated anisotropic rotor.
引用
收藏
页数:6
相关论文
共 50 条
[21]   On Forward and Inverse Energy-Based Magnetic Vector Hysteresis Operators [J].
Egger, Herbert ;
Engertsberger, Felix ;
Domenig, Lukas ;
Roppert, Klaus ;
Kaltenbacher, Manfred .
IEEE TRANSACTIONS ON MAGNETICS, 2025, 61 (04)
[22]   Exact invertible hysteresis models based on play operators [J].
Visone, C ;
Sjöström, M .
PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) :148-152
[23]   State machine based nonlinear hysteresis model [J].
Meister, Andreas ;
Buechner, Steffen ;
Amthor, Arvid .
MECHATRONICS, 2015, 31 :215-221
[24]   A posteriori iron loss computation with a vector hysteresis model [J].
Belahcen, A. ;
Dlala, E. ;
Fonteyn, K. ;
Belkasim, M. .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 29 (06) :1493-1503
[25]   Numerical Identification Procedure for a Phenomenological Vector Hysteresis Model [J].
Burrascano, P. ;
Cardelli, E. ;
Della Torre, E. ;
Drisaldi, G. ;
Faba, A. ;
Ricci, M. ;
Pirani, A. .
IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) :1166-1169
[26]   Vector modeling - Part II: Ellipsoidal vector hysteresis model. Numerical application to a 2D case [J].
Della Torre, E ;
Pinzaglia, E ;
Cardelli, E .
PHYSICA B-CONDENSED MATTER, 2006, 372 (1-2) :115-119
[27]   A Practical Model to Analytically Characterize the Polarization Hysteresis of Ferroelectric Capacitors [J].
Shrestha, Bikash ;
Pieper, Ron ;
Wondmagegn, Wudyalew ;
Mao, Duo ;
Mejia, Israel ;
Stiegler, Harvey ;
Gnade, Bruce E. ;
Quevedo-Lopez, Manuel .
2012 44TH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY (SSST), 2012, :40-44
[28]   A Practical Mathematical Model for Nonlinear Hysteresis of Metal Rubber Isolator [J].
Zhou, Yanguo ;
Qu, Wenzhong ;
Xiao, Li .
VIBRATION, STRUCTURAL ENGINEERING AND MEASUREMENT I, PTS 1-3, 2012, 105-107 :20-23
[29]   Anisotropic Hysteresis Representation of Steel Sheets Based on a Vectorization Technique Applied to Jiles-Atherton Model [J].
Martin, F. ;
Chen, R. ;
Taurines, J. ;
Belahcen, A. .
IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03) :1-4
[30]   Performance Comparison between Jiles-Atherton and Play Vector Hysteresis Models on Field Calculation [J].
Leite, Jean V. ;
Hoffmann, Kleyton ;
Mendes, Filomena B. R. ;
Sadowski, Nelson ;
Bastos, Joao P. A. ;
Batistela, N. J. .
2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,