Linear Decompositions for Multi-Valued Input Classification Functions

被引:1
|
作者
Sasao, Tsutomu [1 ]
Butler, Jon T. [2 ]
机构
[1] Meiji Univ, Kawasaki, Kanagawa 2148571, Japan
[2] Naval Postgrad Sch, Monterey, CA 93943 USA
关键词
D O I
10.1109/ISMVL51352.2021.00013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a multi-valued input classification function, each input combination represents properties of an object, while the output represents the class of the object. Each variable may have different radix. In most cases, the functions are partially defined. To represent multi-valued variables, both one-hot and minimum-length encoding are considered. Experimental results using University of California Irvine (UCI) benchmark functions show that the one-hot approach results in fewer variables than the minimum-length approach with linear decompositions.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 50 条
  • [31] A FIXED POINT THEOREM FOR CONNECTED MULTI-VALUED FUNCTIONS
    SMITHSON, RE
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P1): : 351 - &
  • [32] Generation of Unary Monotone Functions of Multi-Valued Logic
    Panin, D. Yu.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2010, 65 (06) : 257 - 260
  • [33] INVARIANT CONTINUATION OF DISCRETE MULTI-VALUED FUNCTIONS AND THEIR IMPLEMENTATION
    Kabulov, Anvar
    Normatov, Ibrokhimali
    Urunbaev, Erkin
    Muhammadiev, Firdavs
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 747 - 752
  • [34] MULTI-VALUED STRAIN-ENERGY FUNCTIONS FOR CRYSTALS
    ERICKSEN, JL
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1982, 18 (10) : 913 - 916
  • [35] Multi-valued neural networks I: a multi-valued associative memory
    Maximov, Dmitry
    Goncharenko, Vladimir, I
    Legovich, Yury S.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 10189 - 10198
  • [36] The Pettis integral for multi-valued functions via single-valued ones
    Cascales, B.
    Kadets, V.
    Rodriguez, J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) : 1 - 10
  • [37] Multi-valued neural networks I: a multi-valued associative memory
    Dmitry Maximov
    Vladimir I. Goncharenko
    Yury S. Legovich
    Neural Computing and Applications, 2021, 33 : 10189 - 10198
  • [38] MULTI-VALUED LOGIC
    PERRINE, S
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1978, 33 (11-1): : 376 - 382
  • [39] MULTI-VALUED SYMMETRIES
    KASNER, E
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 51 (01) : 69 - 69
  • [40] Correction to: Multi-valued neural networks I: a multi-valued associative memory
    Dmitry Maximov
    Vladimir I. Goncharenko
    Yury S. Legovich
    Neural Computing and Applications, 2023, 35 : 18087 - 18088