LES-pdf simulation of a spark ignited turbulent methane jet

被引:52
作者
Jones, W. P. [1 ]
Prasad, V. N. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Large Eddy Simulation; Joint pdf; Stochastic field method; Methane-air flame; Spark ignition; LARGE-EDDY SIMULATION; PROBABILITY DENSITY-FUNCTION; FORCED IGNITION; FORMULATION; FRACTION;
D O I
10.1016/j.proci.2010.06.076
中图分类号
O414.1 [热力学];
学科分类号
摘要
A spark ignited turbulent jet flame is simulated using Large Eddy Simulation (LES) in conjunction with the filtered probability density function (pdf) equation approach, which is solved using the Eulerian stochastic field method. The spark energy deposition is mimicked by a gaussian distributed source term in the enthalpy equation. A dynamic model for the sub-grid stresses together with a simple gradient diffusion approximation for the scalar fluxes is adopted. The chemistry is represented by a global 4-step chemistry involving seven species. The different stages of the ignition sequence, namely the flame kernel growth, the triple flame propagation against the flow and the stabilisation were in good agreement with the experimental data. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1355 / 1363
页数:9
相关论文
共 34 条
[1]   Measurements of ignition probability in turbulent non-premixed counterflow flames [J].
Ahmed, S. F. ;
Balachandran, R. ;
Mastorakos, E. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2007, 31 :1507-1513
[2]   Spark ignition of turbulent nonpremixed bluff-body flames [J].
Ahmed, S. F. ;
Balachandran, R. ;
Marchione, T. ;
Mastorakos, E. .
COMBUSTION AND FLAME, 2007, 151 (1-2) :366-385
[3]   Spark ignition of lifted turbulent jet flames [J].
Ahmed, S. F. ;
Mastorakos, E. .
COMBUSTION AND FLAME, 2006, 146 (1-2) :215-231
[4]  
Birch A.D., 1981, S INT COMBUSTION, V18, P1775, DOI [10.1016/S0082-0784(81)80182-8, DOI 10.1016/S0082-0784(81)80182-8]
[5]   Direct numerical simulations of localised forced ignition in turbulent mixing layers: The effects of mixture fraction and its gradient [J].
Chakraborty, Nilanjan ;
Mastorakos, E. .
FLOW TURBULENCE AND COMBUSTION, 2008, 80 (02) :155-186
[6]   Large Eddy Simulation of a Methane-Air Diffusion Flame [J].
Clayton, D. J. ;
Jones, W. P. .
FLOW TURBULENCE AND COMBUSTION, 2008, 81 (04) :497-521
[7]   Filtered density function for large eddy simulation of turbulent reacting flows [J].
Colucci, PJ ;
Jaberi, FA ;
Givi, P ;
Pope, SB .
PHYSICS OF FLUIDS, 1998, 10 (02) :499-515
[8]   FUNCTIONAL FORMULATION OF NONISOTHERMAL TURBULENT REACTIVE FLOWS [J].
DOPAZO, C ;
OBRIEN, EE .
PHYSICS OF FLUIDS, 1974, 17 (11) :1968-1975
[9]   A LARGE-EDDY SIMULATION SCHEME FOR TURBULENT REACTING FLOWS [J].
GAO, F ;
OBRIEN, EE .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (06) :1282-1284
[10]   Filtered mass density function for large-eddy simulation of turbulent reacting flows [J].
Jaberi, FA ;
Colucci, PJ ;
James, S ;
Givi, P ;
Pope, SB .
JOURNAL OF FLUID MECHANICS, 1999, 401 :85-121