On Compactness and Consistency in Finite Lattice-Valued Propositional Logic

被引:0
作者
Pan, Xiaodong [1 ]
Xu, Yang [1 ]
Martinez, Luis [2 ]
Ruan, Da [3 ]
Liu, Jun [4 ]
机构
[1] Southwest Jiaotong Univ, Intelligent Control Dev Ctr, Chengdu 610031, Sichuan, Peoples R China
[2] Univ Jaen, Dept Comp, E-223071 Jaen, Spain
[3] Univ Ghent, Belgian Nuclear Research Centre SCKCEN, B-9000 Ghent, Belgium
[4] Univ Ulster, Sch Comp & Math, Coleraine BT52 1SA, Londonderry, North Ireland
来源
HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 2 | 2010年 / 6077卷
关键词
Lattice-valued logic; Consequence operation; Compactness; Fuzzy theory; Consistency; FUZZY CLOSURE OPERATORS; RESOLUTION PRINCIPLE; SYSTEMS; COMPLETENESS; LF(X);
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the semantical theory of finite lattice-valued propositional logic based on finite lattice implication algebras. Based on the fuzzy set theory on a set of formulas, some propositions analogous to those in the classical logic are proved, and using the semantical consequence operation, the consistence and compactness is investigated.
引用
收藏
页码:328 / +
页数:3
相关论文
共 28 条
[1]  
[Anonymous], 1999, Mathematical Principles of Fuzzy Logic, DOI DOI 10.1007/978-1-4615-5217-8
[2]  
[Anonymous], 2003, STUD FUZZINESS SOFT
[3]  
[Anonymous], 1983, LOGIC SEMANTICS META
[4]  
[Anonymous], 1991, PROC INT FUZZY ENG S
[5]  
[Anonymous], 1994, J APPL NONCLASS LOG
[6]  
[Anonymous], THESIS CZECH TECHNIC
[7]  
Belohlávek R, 2002, SOFT COMPUT, V7, P53, DOI [10.1007/s00500-002-0165-y, 10.1007/S00500-002-0165-y]
[8]   Fuzzy closure operators [J].
Belohlávek, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :473-489
[9]  
Belohlavek R., 2002, FUZZY RELATIONAL SYS
[10]   An extension principle for closure operators [J].
Biacino, L ;
Gerla, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) :1-24