Covid-19 Detection in Chest X-ray Images with Deep Learning

被引:1
|
作者
Ozdemir, Zeynep [1 ]
Yalim Keles, Hacer [1 ]
机构
[1] Ankara Univ, Bilgisayar Muhendisligi, Ankara, Turkey
来源
29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021) | 2021年
关键词
Covid-19; Chest X-ray; Convolutional Neural Networks; EfficientNet; Classification; Radiography;
D O I
10.1109/SIU53274.2021.9478028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the primary methods to diagnose Covid-19 illness is to examine Chest X-ray images. In most patients, these images contain abnormalities caused by Covid-19 viral pneumonia. In this study, we conducted extensive empirical analysis to detect such pneumonia on images using Convolutional Neural Networks. Our analysis on a set of existing CNN models show that some of these models are insufficient in decision making. In this context, various binary class classification models are trained using the Covid-19 data from COVID-CXNet dataset and Normal class data from the NIH Chest X-ray dataset. We used Contrast Limited Adaptive Histogram Equalization (CHALE) and Bi-Histogram Equalization (BEASF) based on Adaptive Sigmoid Function for preprocessing the data. Using the transfer learning techniques, ImageNet pretrained models of various CNN models, i.e. DenseNet, VGGNet, EfficientNet are adapted to this domain. The best result is obtained, with a 0.99 F1 score, using the EfficientNetB5 model with preprocessed data.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Detection of COVID-19 Using Deep Learning on X-Ray Images
    Alotaibi, Munif
    Alotaibi, Bandar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (03) : 885 - 898
  • [22] Deep Learning Approaches for Detecting COVID-19 From Chest X-Ray Images: A Survey
    Alghamdi, Hanan S.
    Amoudi, Ghada
    Elhag, Salma
    Saeedi, Kawther
    Nasser, Jomanah
    IEEE ACCESS, 2021, 9 (09): : 20235 - 20254
  • [23] An Efficient Deep Learning Model to Detect COVID-19 Using Chest X-ray Images
    Chakraborty, Somenath
    Murali, Beddhu
    Mitra, Amal K.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (04)
  • [24] Covid-19 Detection from Chest X-Ray Images Using Advanced Deep Learning Techniques
    Mahajan, Shubham
    Raina, Akshay
    Abouhawwash, Mohamed
    Gao, Xiao-Zhi
    Pandit, Amit Kant
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 1541 - 1556
  • [25] Generation of Synthetic Chest X-ray Images and Detection of COVID-19: A Deep Learning Based Approach
    Karbhari, Yash
    Basu, Arpan
    Geem, Zong Woo
    Han, Gi-Tae
    Sarkar, Ram
    DIAGNOSTICS, 2021, 11 (05)
  • [26] Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models
    Zouch, Wassim
    Sagga, Dhouha
    Echtioui, Amira
    Khemakhem, Rafik
    Ghorbel, Mohamed
    Mhiri, Chokri
    Ben Hamida, Ahmed
    ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (07) : 825 - 835
  • [27] Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models
    Wassim Zouch
    Dhouha Sagga
    Amira Echtioui
    Rafik Khemakhem
    Mohamed Ghorbel
    Chokri Mhiri
    Ahmed Ben Hamida
    Annals of Biomedical Engineering, 2022, 50 : 825 - 835
  • [28] Detection of COVID-19 in Chest X-ray Images: A Big Data Enabled Deep Learning Approach
    Awan, Mazhar Javed
    Bilal, Muhammad Haseeb
    Yasin, Awais
    Nobanee, Haitham
    Khan, Nabeel Sabir
    Zain, Azlan Mohd
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (19)
  • [29] A deep learning approach for COVID-19 screening and localization on Chest X-Ray images
    Marcomini, Karem Daiane
    Cardona Cardenas, Diego Armando
    Machado Traina, Agma Juci
    Krieger, Jose Eduardo
    Gutierrez, Marco Antonio
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [30] COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning
    Haghanifar, Arman
    Majdabadi, Mahdiyar Molahasani
    Choi, Younhee
    Deivalakshmi, S.
    Ko, Seokbum
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) : 30615 - 30645