Covid-19 Detection in Chest X-ray Images with Deep Learning

被引:2
作者
Ozdemir, Zeynep [1 ]
Yalim Keles, Hacer [1 ]
机构
[1] Ankara Univ, Bilgisayar Muhendisligi, Ankara, Turkey
来源
29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021) | 2021年
关键词
Covid-19; Chest X-ray; Convolutional Neural Networks; EfficientNet; Classification; Radiography;
D O I
10.1109/SIU53274.2021.9478028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the primary methods to diagnose Covid-19 illness is to examine Chest X-ray images. In most patients, these images contain abnormalities caused by Covid-19 viral pneumonia. In this study, we conducted extensive empirical analysis to detect such pneumonia on images using Convolutional Neural Networks. Our analysis on a set of existing CNN models show that some of these models are insufficient in decision making. In this context, various binary class classification models are trained using the Covid-19 data from COVID-CXNet dataset and Normal class data from the NIH Chest X-ray dataset. We used Contrast Limited Adaptive Histogram Equalization (CHALE) and Bi-Histogram Equalization (BEASF) based on Adaptive Sigmoid Function for preprocessing the data. Using the transfer learning techniques, ImageNet pretrained models of various CNN models, i.e. DenseNet, VGGNet, EfficientNet are adapted to this domain. The best result is obtained, with a 0.99 F1 score, using the EfficientNetB5 model with preprocessed data.
引用
收藏
页数:4
相关论文
共 23 条
[1]  
Al-Karawi D., 2020, MACHINE LEARNING ANA, DOI [DOI 10.1101/2020.04.13.20063479, 10.1101/2020.04.13.20063479]
[2]  
[Anonymous], 2021, ImageNet
[3]  
Arriaga-Garcia EF, 2014, INT CONF ELECTR COMM, P28, DOI 10.1109/CONIELECOMP.2014.6808563
[4]   Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT [J].
Bai, Harrison X. ;
Hsieh, Ben ;
Xiong, Zeng ;
Halsey, Kasey ;
Choi, Ji Whae ;
Tran, Thi My Linh ;
Pan, Ian ;
Shi, Lin-Bo ;
Wang, Dong-Cui ;
Mei, Ji ;
Jiang, Xiao-Long ;
Zeng, Qiu-Hua ;
Egglin, Thomas K. ;
Hu, Ping-Feng ;
Agarwal, Saurabh ;
Xie, Fang-Fang ;
Li, Sha ;
Healey, Terrance ;
Atalay, Michael K. ;
Liao, Wei-Hua .
RADIOLOGY, 2020, 296 (02) :E46-E54
[5]  
Dey N., 2020, COGN COMPUT
[6]  
Furlow Bryant, 2010, Radiol Technol, V81, P437
[7]   COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning [J].
Haghanifar, Arman ;
Majdabadi, Mahdiyar Molahasani ;
Choi, Younhee ;
Deivalakshmi, S. ;
Ko, Seokbum .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) :30615-30645
[8]  
Hassanien, 2020, AUTOMATIC XRAY COVID, DOI [10.1101/2020.03.30.20047787, DOI 10.1101/2020.03.30.20047787]
[9]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[10]   Essentials for Radiologists on COVID-19: An Update-Radiology Scientific Expert Panel [J].
Kanne, Jeffrey P. ;
Little, Brent P. ;
Chung, Jonathan H. ;
Elicker, Brett M. ;
Ketai, Loren H. .
RADIOLOGY, 2020, 296 (02) :E113-E114