A core@double-shell structured silicon/flower-like manganese selenide/carbon composite as superior dual anode materials of Li/Na-ion batteries

被引:6
|
作者
Ma, Canliang [1 ]
Wang, Yihua [1 ]
Song, Ning-jing [2 ]
Wang, Zairan [1 ]
Zhang, Fan [3 ]
Li, Siqi [3 ]
Zhang, Qi [1 ]
Li, Yong [4 ]
Zhao, Yun [1 ]
机构
[1] Shanxi Univ, Inst Mol Sci, Key Lab Mat Energy Convers & Storage Shanxi Prov, Taiyuan 030006, Peoples R China
[2] Jinzhong Univ, Coll Chem & Chem Engn, Jinzhong 030619, Peoples R China
[3] Shanxi Univ, Sch Elect Power Civil Engn & Architecture, Taiyuan, Peoples R China
[4] Shanxi Univ, Res Ctr Fine Chem Engn, Taiyuan, Peoples R China
关键词
composite; core@double-shell structure; dual anode material; flower-like MnSe; in-situ polypyrrole coating; Li; Na-ion storage; DOPED CARBON; RATE CAPABILITY; PERFORMANCE; MNSE; NANOSTRUCTURES; NANOFIBERS; STABILITY; NANOCUBES; FIBERS; LIFE;
D O I
10.1002/er.8289
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the feasible solutions for enhancing new energy density of secondary batteries is to develop high-performance dual anode materials for lithium and sodium-ion batteries (LIBs&SIBs). To address this key challenge, we introduce a novel silicon/flower-like manganese selenide/carbon composite (Si@MnSe@PPyC/rGO) with core@double-shell structure as potential dual anode materials. The morphology, structure and composition of the composite are determined by means of SEM, TEM, EDS, XRD, Raman, TGA and XPS. The key to the successful synthesis process is that in situ polymerization of polypyrrole on the nanosheet of flower-like Si@MnO2 preserves the intermediate layer with flower-like morphology during selenization. Si@MnSe@PPyC/rGO exhibits the high performance owing to exceptional advantages such as the high capacity silicon core, the stable flower-shaped MnSe and PPyC double shells as protective layer, as well as the excellent conductive network of rGO. This material delivers a greatly enhanced reversible capacity (803 mAh/g at 0.1 A/g), remarkable stability and excellent rate performance (437 mAh/g even at 3.2 A/g) in LIBs. For Na-ion storage, it pleasantly reaches 323 mAh/g at 0.2 A/g and remains constant at 226.4 mAh/g after 500 cycles at 2.0 A/g. This study provides versatile strategy so as to maintain the unique morphology of nano-metal oxide during selenization treatment, and supplies a cost-effective strategy for preparing high-performance dual-anode materials for Li/Na-ion storage. Novelty Statement Novel silicon/flower-like manganese selenide/carbon composites (Si@MnSe@PPyC/rGO) with core@double-shell structure are successfully fabricated as superior dual anode materials for Li/Na-ion storage for the first time. The critical step is the in-situ coating of PPy on the surface of nanosheets of Si@flower-like MnO2 which could remain the original flower-like morphology unchanged during selenization treatment. Si@MnSe@PPyC/rGO exhibits excellent potential as a dual anode material candidate for high performance Li/Na-ion storage including high capacity, stable cycling performance and high rate capability.
引用
收藏
页码:15912 / 15925
页数:14
相关论文
共 50 条
  • [21] Engineering of Yolk-Double Shell Cube-like SnS@N-S Codoped Carbon as a High-Performance Anode for Li- and Na-Ion Batteries
    Chen, Miaoling
    Zhang, Zengyao
    Si, Liping
    Wang, Ruibin
    Cai, Junjie
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (38) : 35050 - 35059
  • [22] Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries
    Wang, Jie
    Liu, Dai-Huo
    Wang, Ying-Ying
    Hou, Bao-Hua
    Zhang, Jing-Ping
    Wang, Rong-Shun
    Wu, Xing-Long
    JOURNAL OF POWER SOURCES, 2016, 307 : 738 - 745
  • [23] Self-Assembled Flower-like ZnMoO4/Graphene Composite Materials as Anode in Lithium-Ion Batteries
    Tang, Mei
    Niu, Yubin
    Huang, Jing
    Li, Chang Ming
    CHEMISTRYSELECT, 2017, 2 (06): : 2144 - 2149
  • [24] Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries
    Zhou, Xiang-yang
    Tang, Jing-jing
    Yang, Juan
    Xie, Jing
    Ma, Lu-lu
    ELECTROCHIMICA ACTA, 2013, 87 : 663 - 668
  • [25] Preparation of graphene supported flower-like porous 3D ZnO-NiO ternary composites for high capacity anode materials for Li-ion batteries
    Huang, Ying
    Chen, Xuefang
    Zhang, Kaichuang
    Feng, Xuansheng
    CERAMICS INTERNATIONAL, 2015, 41 (10) : 13532 - 13540
  • [26] Spherical Sb Core/Nb2O5-C Double-Shell Structured Composite as an Anode Material for Li Secondary Batteries
    Seo, Hyungeun
    Kim, Kyungbae
    Kim, Jae-Hun
    ENERGIES, 2020, 13 (08)
  • [27] Core/shell-structured nickel cobaltite/onion-like carbon nanocapsules as improved anode material for lithium-ion batteries
    Liu, Xianguo
    Cui, Caiyun
    Wu, Niandu
    Or, Siu Wing
    Bi, Nannan
    CERAMICS INTERNATIONAL, 2015, 41 (06) : 7511 - 7518
  • [28] Synthesis of hierarchically flower-like FeWO4 as high performance anode materials for Li-ion batteries by a simple hydrothermal process
    Kang, Shuai
    Li, Yunyong
    Wu, Mingmei
    Cai, Mei
    Shen, Pei Kang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (28) : 16081 - 16087
  • [29] Double-shell and yolk-shell structured ZnSe-carbon nanospheres as anode materials for high-performance potassium-ion batteries
    Lee, Areum
    Park, Gi Dae
    Kang, Yun Chan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (03) : 3539 - 3553
  • [30] Assembly of core-shell structured porous carbon-graphene composites as anode materials for lithium-ion batteries
    Guo, Rong
    Zhao, Li
    Yue, Wenbo
    ELECTROCHIMICA ACTA, 2015, 152 : 338 - 344