Boundedness in a chemotaxis-haptotaxis model with gradient-dependent flux limitation

被引:7
作者
Wang, Hui [1 ]
Zheng, Pan [1 ,2 ]
Xing, Jie [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Sci, Chongqing 400065, Peoples R China
[2] Yunnan Univ, Coll Math & Stat, Kunming 650091, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Global boundedness; chemotaxis-haptotaxis; Flux-limitation; SIGNAL-TRANSDUCTION; SYSTEM; TISSUE; INVASION; BLOWUP;
D O I
10.1016/j.aml.2021.107505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a chemotaxis-haptotaxis system with gradient-dependent flux-limitation {u(t) = Delta u - chi del. (uf(vertical bar del v vertical bar(2) )del v) -xi del . (u del w) + mu u(1 - u - w), x is an element of Omega, t > 0, v(t) = Delta v - v + u, x is an element of Omega, t > 0, wt = -vw, x is an element of Omega, t > 0, under a smooth bounded domain Omega subset of R-n, n is an element of {2, 3}, where chi, xi and mu are positive parameters, f is an element of C-2([0, infinity)) satisfies the condition f(vertical bar del v vertical bar(2)) <= (1 + vertical bar del v vertical bar(2)))(p-2/2), with 1 < p < n/n-1. It is proved that for sufficiently smooth initial data (u(0), v(0), w(0)), the corresponding initial-boundary problem possesses a unique classical solution, which is uniformly bounded in time. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 33 条
  • [1] Alikakos N.D., 1979, Commun. Partial Differ. Equ., V4, P827, DOI DOI 10.1080/03605307908820113
  • [2] SIGNAL TRANSDUCTION FOR CHEMOTAXIS AND HAPTOTAXIS BY MATRIX MOLECULES IN TUMOR-CELLS
    AZNAVOORIAN, S
    STRACKE, ML
    KRUTZSCH, H
    SCHIFFMANN, E
    LIOTTA, LA
    [J]. JOURNAL OF CELL BIOLOGY, 1990, 110 (04) : 1427 - 1438
  • [3] Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues
    Bellomo, N.
    Bellouquid, A.
    Tao, Y.
    Winkler, M.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) : 1663 - 1763
  • [4] A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up
    Bellomo, Nicola
    Winkler, Michael
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (03) : 436 - 473
  • [5] MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS
    Bellomo, Nicola
    Bellouquid, Abdelghani
    Nieto, Juan
    Soler, Juan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (07) : 1179 - 1207
  • [6] On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding
    Bendahmane, Mostafa
    Buerger, Raimund
    Ruiz-Baier, Ricardo
    Urbano, Jose Miguel
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (13) : 1704 - 1737
  • [7] Signal transduction and the u-PA/u-PAR system
    Besser, D
    Verde, P
    Nagamine, Y
    Blasi, F
    [J]. FIBRINOLYSIS, 1996, 10 (04) : 215 - 237
  • [8] A mathematical model for lymphangiogenesis in normal and diabetic wounds
    Bianchi, Arianna
    Painter, Kevin J.
    Sherratt, Jonathan A.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2015, 383 : 61 - 86
  • [9] Burczak J, 2016, TOPOL METHOD NONL AN, V47, P369
  • [10] Chaplain MAJ, 2006, NETW HETEROG MEDIA, V1, P399