Boundedness in a chemotaxis-haptotaxis model with gradient-dependent flux limitation

被引:7
作者
Wang, Hui [1 ]
Zheng, Pan [1 ,2 ]
Xing, Jie [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Sci, Chongqing 400065, Peoples R China
[2] Yunnan Univ, Coll Math & Stat, Kunming 650091, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Global boundedness; chemotaxis-haptotaxis; Flux-limitation; SIGNAL-TRANSDUCTION; SYSTEM; TISSUE; INVASION; BLOWUP;
D O I
10.1016/j.aml.2021.107505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a chemotaxis-haptotaxis system with gradient-dependent flux-limitation {u(t) = Delta u - chi del. (uf(vertical bar del v vertical bar(2) )del v) -xi del . (u del w) + mu u(1 - u - w), x is an element of Omega, t > 0, v(t) = Delta v - v + u, x is an element of Omega, t > 0, wt = -vw, x is an element of Omega, t > 0, under a smooth bounded domain Omega subset of R-n, n is an element of {2, 3}, where chi, xi and mu are positive parameters, f is an element of C-2([0, infinity)) satisfies the condition f(vertical bar del v vertical bar(2)) <= (1 + vertical bar del v vertical bar(2)))(p-2/2), with 1 < p < n/n-1. It is proved that for sufficiently smooth initial data (u(0), v(0), w(0)), the corresponding initial-boundary problem possesses a unique classical solution, which is uniformly bounded in time. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 33 条
[1]  
Alikakos N.D., 1979, Commun. Partial Differ. Equ., V4, P827, DOI DOI 10.1080/03605307908820113
[2]  
[Anonymous], ARXIV14077382
[3]   SIGNAL TRANSDUCTION FOR CHEMOTAXIS AND HAPTOTAXIS BY MATRIX MOLECULES IN TUMOR-CELLS [J].
AZNAVOORIAN, S ;
STRACKE, ML ;
KRUTZSCH, H ;
SCHIFFMANN, E ;
LIOTTA, LA .
JOURNAL OF CELL BIOLOGY, 1990, 110 (04) :1427-1438
[4]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[5]   A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up [J].
Bellomo, Nicola ;
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (03) :436-473
[6]   MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS [J].
Bellomo, Nicola ;
Bellouquid, Abdelghani ;
Nieto, Juan ;
Soler, Juan .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (07) :1179-1207
[7]   On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding [J].
Bendahmane, Mostafa ;
Buerger, Raimund ;
Ruiz-Baier, Ricardo ;
Urbano, Jose Miguel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (13) :1704-1737
[8]   Signal transduction and the u-PA/u-PAR system [J].
Besser, D ;
Verde, P ;
Nagamine, Y ;
Blasi, F .
FIBRINOLYSIS, 1996, 10 (04) :215-237
[9]   A mathematical model for lymphangiogenesis in normal and diabetic wounds [J].
Bianchi, Arianna ;
Painter, Kevin J. ;
Sherratt, Jonathan A. .
JOURNAL OF THEORETICAL BIOLOGY, 2015, 383 :61-86
[10]  
Burczak J, 2016, TOPOL METHOD NONL AN, V47, P369