Suitable weak solutions to the micropolar fluids model in a bounded domain

被引:5
作者
Su, Jingrui [1 ]
机构
[1] Taizhou Univ, Dept Math, Taizhou 225300, Peoples R China
关键词
Suitable weak solutions; Weak-strong uniqueness; Relative entropy inequality; Compressible micropolar fluids model; NAVIER-STOKES EQUATIONS; STRONG UNIQUENESS; REGULARITY CRITERIA; CAUCHY-PROBLEM;
D O I
10.1016/j.jmaa.2021.125406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the suitable weak solutions to the compressible micropolar fluids model. We first prove that these solutions satisfy the relative entropy inequality, which plays a crucial role in studying the suitable weak solutions to the micropolar fluids model. Then we establish the global existence of the suitable weak solutions for the compressible micropolar fluids model. As an application, we obtain the weak-strong uniqueness principle for the compressible micropolar fluids model. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 26 条
[1]   Weak solutions to the equations of motion for compressible magnetic fluids [J].
Amirat, Youcef ;
Hamdache, Kamel .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (05) :433-467
[2]   Suitable weak solutions of the Navier-Stokes equations constructed by a space-time numerical discretization [J].
Berselli, Luigi C. ;
Fagioli, Simone ;
Spirito, Stefano .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 :189-208
[3]   Existence of Suitable Weak Solutions to the Navier-Stokes Equations for Intermittent Data [J].
Bradshaw, Zachary ;
Kukavica, Igor .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (01)
[4]   The suitable weak solution for the Cauchy problem of the double-diffusive convection system [J].
Chen, Fei ;
Guo, Boling .
APPLICABLE ANALYSIS, 2019, 98 (09) :1724-1740
[5]   GLOBAL WELL-POSEDNESS OF THE 2D INCOMPRESSIBLE MICROPOLAR FLUID FLOWS WITH PARTIAL VISCOSITY AND ANGULAR VISCOSITY [J].
Chen, Mingtao .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) :929-935
[6]  
ERINGEN AC, 1966, J MATH MECH, V16, P1
[7]  
Feireisl E., 2004, OXF LEC S MATH APPL, V26
[8]   On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law [J].
Feireisl, Eduard .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (03) :271-278
[9]   Weak-strong uniqueness for the compressible Navier-Stokes equations with a hard-sphere pressure law [J].
Feireisl, Eduard ;
Lu, Yong ;
Novotny, Antonin .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (11) :2003-2016
[10]   Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier-Stokes System [J].
Feireisl, Eduard ;
Jin, Bum Ja ;
Novotny, Antonin .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (04) :717-730