Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector

被引:417
作者
Stantchev, Rayko Ivanov [1 ]
Sun, Baoqing [2 ]
Hornett, Sam M. [1 ]
Hobson, Peter A. [1 ,3 ]
Gibson, Graham M. [2 ]
Padgett, Miles J. [2 ]
Hendry, Euan [1 ]
机构
[1] Univ Exeter, Sch Phys, Stocker Rd, Exeter FX4 4QI, Devon, England
[2] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[3] QinetiQ Ltd, Cody Technol Pk,Ively Rd, Farnborough GU14 0LX, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
MODULATION; DEPENDENCE; APERTURES; SILICON;
D O I
10.1126/sciadv.1600190
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Terahertz (THz) imaging can see through otherwise opaque materials. However, because of the long wavelengths of THz radiation (lambda = 400 mu m at 0.75 THz), far-field THz imaging techniques suffer from low resolution compared to visible wavelengths. We demonstrate noninvasive, near-field THz imaging with subwavelength resolution. We project a time-varying, intense (>100 mu J/cm(2)) optical pattern onto a silicon wafer, which spatially modulates the transmission of synchronous pulse of THz radiation. An unknown object is placed on the hidden side of the silicon, and the far-field THz transmission corresponding to each mask is recorded by a single-element detector. Knowledge of the patterns and of the corresponding detector signal are combined to give an image of the object. Using this technique, we image a printed circuit board on the underside of a 115-mu m-thick silicon wafer with similar to 100-mu m (lambda/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity, it is possible to detect fissures in the circuitry wiring of a few micrometers in size. THz imaging systems of this type will have other uses too, where noninvasive measurement or imaging of concealed structures is necessary, such as in semiconductor manufacturing or in ex vivo bioimaging.
引用
收藏
页数:6
相关论文
共 55 条
[1]   Non-invasive investigation of art paintings by terahertz imaging [J].
Abraham, E. ;
Younus, A. ;
Delagnes, J. C. ;
Mounaix, P. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2010, 100 (03) :585-590
[2]   AMPLITUDE-MODULATION, PHASE-MODULATION, AND FREQUENCY-MODULATION OF FAR-INFRARED RADIATION BY OPTICAL-EXCITATION OF SILICON [J].
ALIUS, H ;
DODEL, G .
INFRARED PHYSICS, 1991, 32 :1-11
[3]   Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting [J].
Augustin, S. ;
Hieronymus, J. ;
Jung, P. ;
Huebers, H. -W. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2015, 36 (05) :496-512
[4]   Terahertz near-field imaging of metallic subwavelength holes and hole arrays [J].
Bitzer, Andreas ;
Walther, Markus .
APPLIED PHYSICS LETTERS, 2008, 92 (23)
[5]   Real-time terahertz near-field microscope [J].
Blanchard, F. ;
Doi, A. ;
Tanaka, T. ;
Hirori, H. ;
Tanaka, H. ;
Kadoya, Y. ;
Tanaka, K. .
OPTICS EXPRESS, 2011, 19 (09) :8277-8284
[6]   Imaging with terahertz radiation [J].
Chan, Wai Lam ;
Deibel, Jason ;
Mittleman, Daniel M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (08) :1325-1379
[7]   A single-pixel terahertz imaging system based on compressed sensing [J].
Chan, Wai Lam ;
Charan, Kriti ;
Takhar, Dharmpal ;
Kelly, Kevin F. ;
Baraniuk, Richard G. ;
Mittleman, Daniel M. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[8]   Near-field terahertz imaging with a dynamic aperture [J].
Chen, Q ;
Jiang, ZP ;
Xu, GX ;
Zhang, XC .
OPTICS LETTERS, 2000, 25 (15) :1122-1124
[9]   MULTIPLEXED IMAGING BY MEANS OF OPTICALLY GENERATED KRONECKER PRODUCTS .1. THE BASIC CONCEPT [J].
DAVIS, DS .
APPLIED OPTICS, 1995, 34 (07) :1170-1176
[10]  
Dexheimer S. L., 2008, TERAHERTZ SPECTROSCO