Digitized adiabatic quantum computing with a superconducting circuit

被引:376
作者
Barends, R. [1 ]
Shabani, A. [2 ]
Lamata, L. [3 ]
Kelly, J. [1 ]
Mezzacapo, A. [3 ,6 ]
Heras, U. Las [3 ]
Babbush, R. [2 ]
Fowler, A. G. [1 ]
Campbell, B. [4 ]
Chen, Yu [1 ]
Chen, Z. [4 ]
Chiaro, B. [4 ]
Dunsworth, A. [4 ]
Jeffrey, E. [1 ]
Lucero, E. [1 ]
Megrant, A. [4 ]
Mutus, J. Y. [1 ]
Neeley, M. [1 ]
Neill, C. [4 ]
O'Malley, P. J. J. [4 ]
Quintana, C. [4 ]
Roushan, P. [1 ]
Sank, D. [1 ]
Vainsencher, A. [4 ]
Wenner, J. [4 ]
White, T. C. [4 ]
Solano, E. [3 ,5 ]
Neven, H. [2 ]
Martinis, John M. [1 ,4 ]
机构
[1] Google Inc, Santa Barbara, CA 93117 USA
[2] Google Inc, Venice, CA 90291 USA
[3] Univ Basque Country UPV EHU, Dept Phys Chem, Apartado 644, E-48080 Bilbao, Spain
[4] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[5] Basque Fdn Sci, Ikerbasque, Maria Diaz Haro 3, Bilbao 48013, Spain
[6] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
COMPUTATION; SIMULATION;
D O I
10.1038/nature17658
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum mechanics can help to solve complex problems in physics(1) and chemistry(2), provided they can be programmed in a physical device. In adiabatic quantum computing(3-5), a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing(6), which enables the construction of arbitrary interactions and is compatible with error correction(7,8), but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation(9-12) of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
引用
收藏
页码:222 / 226
页数:5
相关论文
共 29 条
[1]   Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation [J].
Aharonov, Dorit ;
van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM REVIEW, 2008, 50 (04) :755-787
[2]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[3]   Adiabatic Quantum Simulation of Quantum Chemistry [J].
Babbush, Ryan ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
SCIENTIFIC REPORTS, 2014, 4
[4]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[5]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[6]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[7]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[8]   Computational multiqubit tunnelling in programmable quantum annealers [J].
Boixo, Sergio ;
Smelyanskiy, Vadim N. ;
Shabani, Alireza ;
Isakov, Sergei V. ;
Dykman, Mark ;
Denchev, Vasil S. ;
Amin, Mohammad H. ;
Smirnov, Anatoly Yu. ;
Mohseni, Masoud ;
Neven, Hartmut .
NATURE COMMUNICATIONS, 2016, 7
[9]  
Bravyi S. B., 1998, PREPRINT
[10]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226