Game semantics and linear CPS interpretation

被引:11
作者
Laird, J [1 ]
机构
[1] Univ Sussex, Dept Informat, Brighton, E Sussex, England
关键词
game semantics; continuation passing; linear type theory;
D O I
10.1016/j.tcs.2004.10.022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a semantic analysis of the "linearly used continuation-passing interpretation" of functional languages, based on game semantics. This consists of a category of games with a coherence condition on moves-yielding a fully complete model of an affine-type theory-and a syntax-independent and full embedding of a category of Hyland-Ong/Nickau-style "well-bracketed" games into it. We show that this embedding corresponds precisely to linear CPS interpretation in its action on a games model of call-by-value PCF, yielding a proof of full abstraction for the associated translation. We discuss extensions of the semantics to deal with recursive types, call-by-name evaluation, non-local jumps, and state. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 224
页数:26
相关论文
共 32 条
[1]  
Abramsky S, 2000, INFORM COMPUT, V163, P409, DOI [10.1006/inco.2000.2930, 10.1006/inco2000.2930]
[2]  
Abramsky S, 1998, LECT NOTES COMPUT SC, V1414, P1, DOI 10.1007/BFb0028004
[3]   FULL ABSTRACTION IN THE LAZY LAMBDA-CALCULUS [J].
ABRAMSKY, S ;
ONG, CHL .
INFORMATION AND COMPUTATION, 1993, 105 (02) :159-267
[4]  
ABRAMSKY S, 1997, ALGOL LIKE LANGUAGES
[5]  
ABRAMSKY S., 1998, P 13 ANN S LOG COMP
[6]  
ABRAMSKY S, 1997, ESSAYS HONOUR R MILN
[7]  
[Anonymous], 1985, LECT PREDOMAINS PART
[8]   Linear continuation-passing [J].
Berdine, Josh ;
O'Hearn, Peter ;
Reddy, Uday ;
Thielecke, Hayo .
Higher-Order and Symbolic Computation, 2002, 15 (2-3) :181-208
[9]  
BERDINE J, 2000, AFFINE TYPING COMPLE
[10]  
DANVY O, 1995, CMUCS95121 DEP COMP