A GENERALIZATION OF THE BLASCHKE-LEBESGUE PROBLEM TO A KIND OF CONVEX DOMAINS

被引:2
作者
Pan, Shengliang [1 ]
Zhang, Deyan [2 ]
Chao, Zhongjun [3 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Huaibei Normal Univ, Sch Math Sci, Huaibei 235000, Anhui, Peoples R China
[3] Chengdu 7 High Sch, Chengdu 610041, Sichuan Provinc, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2016年 / 21卷 / 05期
关键词
Convex domains; biwidth; mixed area; difference domain; area; BODIES; WIDTH;
D O I
10.3934/dcdsb.2016012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will introduce for a convex domain K in the Euclidean plane a function Omega(n)(K, theta) which is called by us the biwidth of K, and then try to find out the least area convex domain with constant biwidth Lambda among all convex domains with the same constant biwidth. When n is an odd integer, it is proved that our problem is just that of Blaschke-Lebesgue, and when n is an even number, we give a lower bound of the area of such constant biwidth domains.
引用
收藏
页码:1587 / 1601
页数:15
相关论文
共 25 条
[1]  
Anciaux H., 2009, PREPRINT
[2]   ON THE THREE-DIMENSIONAL BLASCHKE-LEBESGUE PROBLEM [J].
Anciaux, Henri ;
Guilfoyle, Brendan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (05) :1831-1839
[3]  
[Anonymous], 1952, Quart. J. Math. Oxford Ser.
[4]   Analytic parametrization of three-dimensional bodies of constant width [J].
Bayen, T. ;
Lachand-Robert, T. ;
Oudet, E. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 186 (02) :225-249
[5]   ANALYTICAL PARAMETERIZATION OF ROTORS AND PROOF OF A GOLDBERG CONJECTURE BY OPTIMAL CONTROL THEORY [J].
Bayen, Terence .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 47 (06) :3007-3036
[6]   Convex fields of constant data in small amounts [J].
Blaschke, W .
MATHEMATISCHE ANNALEN, 1915, 76 :504-513
[7]  
BLASCHKE W., 1956, Kreis und Kugel, V2ed
[8]  
Campi S., 1996, Partial differential equations and applications, V177, P43
[9]   SETS OF CONSTANT WIDTH [J].
CHAKERIAN, GD .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 19 (01) :13-+
[10]   AN AREA-WIDTH INEQUALITY FOR CONVEX CURVES [J].
CHERNOFF, PR .
AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (01) :34-&