The Free Energy for Rotating and Charged Black Holes and Banados, Teitelboim and Zanelli Black Holes

被引:2
作者
Hussein, N. A. [1 ]
Eisa, D. A. [1 ]
Ibrahim, T. A. S. [2 ]
机构
[1] Assiut Univ, Fac Sci, Dept Math, New Valley, Egypt
[2] Elminia Univ, Fac Sci, Dept Math, Elminia, Egypt
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2018年 / 73卷 / 11期
关键词
Black Holes; Cosmological Constant; Free Energy; COSMOLOGICAL CONSTANT; 1ST LAW; THERMODYNAMICS; MECHANICS;
D O I
10.1515/zna-2018-0210
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper aims to obtain the thermodynamic variables (temperature, thermodynamic volume, angular velocity, electrostatic potential, and heat capacity) corresponding to the Schwarzschild black hole, Reissner-Nordstrom black hole, Kerr black hole and Kerr-Newman-Anti-de Sitter black hole. We also obtained the free energy for black holes by using three different methods. We obtained the equation of state for rotating Banados, Teitelboim and Zanelli black holes. Finally, we used the quantum correction of the partition function to obtain the heat capacity and entropy in the quantum sense.
引用
收藏
页码:1061 / 1073
页数:13
相关论文
共 32 条
[1]  
[Anonymous], JEHP
[2]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[3]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[4]   Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories [J].
Caldarelli, MM ;
Cognola, G ;
Klemm, D .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (02) :399-420
[5]   The (2+1)-dimensional black hole [J].
Carlip, S .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (12) :2853-2879
[6]   ASPECTS OF BLACK-HOLE QUANTUM-MECHANICS AND THERMODYNAMICS IN 2+1-DIMENSIONS [J].
CARLIP, S ;
TEITELBOIM, C .
PHYSICAL REVIEW D, 1995, 51 (02) :622-631
[7]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[8]   Black hole enthalpy and an entropy inequality for the thermodynamic volume [J].
Cvetic, M. ;
Gibbons, G. W. ;
Kubiznak, D. ;
Pope, C. N. .
PHYSICAL REVIEW D, 2011, 84 (02)
[9]   The cosmological constant and black-hole thermodynamic potentials [J].
Dolan, Brian P. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (12)
[10]   General form of thermodynamical entropy for black hole [J].
Ghosh, A ;
Mitra, P .
MODERN PHYSICS LETTERS A, 1996, 11 (15) :1231-1234