Modeling of Imperfect Viscoelastic Interfaces in Composite Materials

被引:2
作者
Cruz-Gonzalez, Oscar Luis [1 ,4 ]
Rodriguez-Ramos, Reinaldo [2 ]
Lebon, Frederic [1 ]
Sabina, Federico J. [3 ]
机构
[1] Aix Marseille Univ, Cent Marseille, CNRS, LMA UMR 7031, F-13453 Marseille, France
[2] Univ La Habana, Fac Matemat & Comp, Havana 10400, Cuba
[3] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Apartado Postal 20-126, Alcaldia Alvaro Obregon 01000, Cdmx, Mexico
[4] Sorbonne Univ, UMR 7190, iMAT, Inst Jean Le Rond dAlembert, F-75005 Paris, France
关键词
imperfect viscoelasticity interfaces; hierarchical structure; composite materials; three-scale asymptotic homogenization method; soft interphase; MATCHED ASYMPTOTIC-EXPANSION; PERIODIC HOMOGENIZATION; EFFECTIVE BEHAVIOR; CONTACT; SOFT; CREEP; COMPUTATION; ELASTICITY; SHELL; MEDIA;
D O I
10.3390/coatings12050705
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work deals with hierarchical composites in three dimensions, whose constituents behave as non-aging linear viscoelastic materials. We model the influence that imperfect viscoelastic interfaces have on the macroscopic effective response of these structures. As an initial approach, the problem of two bodies in adhesion is studied and in particular the case of soft viscoelastic interface at zero-order is considered. We deduce the integral form of the viscoelastic interface by applying the matched asymptotic expansion method, the correspondence principle, and the Laplace-Carson transform. Then, by adapting the integral form previously obtained, we address a heterogeneous problem for periodic structures. Here, theoretical results obtained for perfect interfaces are extended to the formal viscoelastic counterpart of the spring-type imperfect interface model. Finally, we show the potential of the proposed approach by performing calculations of effective properties in heterogeneous structures with two- and three-scale geometrical configurations and imperfect viscoelastic interfaces.
引用
收藏
页数:20
相关论文
共 49 条
  • [2] A model of imperfect interface with damage
    Bonetti E.
    Bonfanti G.
    Lebon F.
    Rizzoni R.
    [J]. Meccanica, 2017, 52 (8) : 1911 - 1922
  • [3] Multiscale analysis for predicting the constitutive tensor effective coefficients of layered composites with micro and macro failures
    Brito-Santana, Humberto
    Medeiros Thiesen, Jose Luis
    de Medeiros, Ricardo
    Mendes Ferreira, Antonio Joaquim
    Rodriguez-Ramos, Reinaldo
    Tita, Volnei
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 75 : 250 - 266
  • [4] Christensen R.M., 1982, THEORY VISCOELASTICI, V2nd ed.
  • [5] Ciarlet PG, 1990, ACTA APPL MATH, V18, P190, DOI [10.1007/BF00046568, DOI 10.1007/BF00046568]
  • [6] Effective behavior of long and short fiber-reinforced viscoelastic composites
    Cruz-Gonzalez, O. L.
    Ramirez-Torres, A.
    Rodriguez-Ramos, R.
    Otero, J. A.
    Penta, R.
    Lebon, F.
    [J]. APPLICATIONS IN ENGINEERING SCIENCE, 2021, 6
  • [7] On the effective behavior of viscoelastic composites in three dimensions
    Cruz-Gonzalez, O. L.
    Rodriguez-Ramos, R.
    Otero, J. A.
    Ramirez-Torres, A.
    Penta, R.
    Lebon, F.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2020, 157 (157)
  • [8] Cruz-Gonzalez OL, 2018, GEN MODELS NONCLASSI, V89, P203
  • [9] A hierarchical asymptotic homogenization approach for viscoelastic composites
    Cruz-Gonzalez, Oscar Luis
    Ramirez-Torres, Ariel
    Rodriguez-Ramos, Reinaldo
    Penta, Raimondo
    Bravo-Castillero, Julian
    Guinovart-Diaz, Raul
    Merodio, Jose
    Sabina, Federico J.
    Lebon, Frederic
    [J]. MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2021, 28 (21) : 2190 - 2201
  • [10] Periodic homogenization for Kelvin-Voigt viscoelastic media with a Kelvin-Voigt viscoelastic interphase
    Daridon, Loic
    Licht, Christian
    Orankitjaroen, Somsak
    Pagano, Stephane
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2016, 58 : 163 - 171