Synchronization in time-varying networks: A matrix measure approach

被引:58
作者
Chen, Maoyin [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 01期
关键词
D O I
10.1103/PhysRevE.76.016104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Synchronization in complex networks has attracted lots of interest in various fields. We consider synchronization in time-varying networks, in which the weights of links are time varying. We propose a useful approach-i.e., the matrix measure approach-to derive some analytically sufficient conditions for synchronization in time-varying networks. These conditions are less conservative than many existing synchronization conditions. Theoretical analysis and numerical simulations of different networks verify our main results.
引用
收藏
页数:10
相关论文
共 39 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Synchronized state of coupled dynamics on time-varying networks [J].
Amritkar, RE ;
Hu, CK .
CHAOS, 2006, 16 (01)
[3]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[4]   Synchronization in asymmetrically coupled networks with node balance [J].
Belykh, I ;
Belykh, V ;
Hasler, M .
CHAOS, 2006, 16 (01)
[5]   Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICAL REVIEW E, 2000, 62 (05) :6332-6345
[6]   Connection graph stability method for synchronized coupled chaotic systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :159-187
[7]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[8]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[9]   Synchronization is enhanced in weighted complex networks [J].
Chavez, M ;
Hwang, DU ;
Amann, A ;
Hentschel, HGE ;
Boccaletti, S .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[10]   Some simple synchronization criteria for complex dynamical networks [J].
Chen, Maoyin .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (11) :1185-1189