Normal holonomy and rational properties of the shape operator

被引:0
作者
Olmos, Carlos [1 ]
Riano-Riano, Richar [2 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, Ciudad Univ, RA-5000 Cordoba, Argentina
[2] Univ Los Andes, Fac Ciencias, Dept Matemat, Cra 1 18A-12, Bogota, Colombia
关键词
PARALLEL MEAN-CURVATURE; HIGHER RANK; SUBMANIFOLDS; REPRESENTATIONS; SPACES; ORBITS;
D O I
10.1007/s00229-017-0993-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a most singular orbit of the isotropy representation of a simple symmetric space. Let (.i, Phi i) be an irreducible factor of the normal holonomy representation (.pM, Phi (p)). We prove that there exists a basis of a section Sigma i..i of Phi i such that the corresponding shape operators have rational eigenvalues (this is not in general true for other isotropy orbits). Conversely, this property, if referred to some non-transitive irreducible normal holonomy factor, characterizes the isotropy orbits. We also prove that the definition of a submanifold with constant principal curvatures can be given by using only the traceless shape operator, instead of the shape operator, restricted to a non-transitive (non necessarily irreducible) normal holonomy factor. This article generalizes previous results of the authors that characterized Veronese submanifolds in terms of normal holonomy.
引用
收藏
页码:467 / 482
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 2016, SUBMANIFOLDS HOLONOM
[2]  
Console S, 1997, Q J MATH, V48, P309
[3]   A Berger type normal holonomy theorem for complex submanifolds [J].
Console, Sergio ;
Di Scala, Antonio J. ;
Olmos, Carlos .
MATHEMATISCHE ANNALEN, 2011, 351 (01) :187-214
[5]  
Di Scala AJ, 2004, J REINE ANGEW MATH, V574, P79
[6]  
Eschenburg JH, 1999, J REINE ANGEW MATH, V507, P93
[7]   NORMAL HOLONOMY GROUPS AND S-REPRESENTATIONS [J].
HEINTZE, E ;
OLMOS, C .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (03) :869-874
[8]  
HEINTZE E, 1995, CONF PROC LECT NOT G, V4, P214
[9]  
OLMOS C, 1994, J DIFFER GEOM, V39, P605
[10]  
OLMOS C, 1993, J DIFFER GEOM, V38, P225