A Distributionally Robust Optimization Approach for Outlier Detection

被引:0
作者
Chen, Ruidi [1 ]
Paschalidis, Ioannis Ch. [2 ,3 ]
机构
[1] Boston Univ, Div Syst Engn, Boston, MA 02446 USA
[2] Boston Univ, Div Syst Engn, Dept Elect & Comp Engn, 8 St Marys St, Boston, MA 02215 USA
[3] Boston Univ, Dept Biomed Engn, 8 St Marys St, Boston, MA 02215 USA
来源
2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2018年
关键词
REGRESSION; ASYMPTOTICS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the outlier detection problem in a linear regression setting. Outlying observations can be detected by large residuals but this approach is not robust to large outliers which tend to shift the residual function. Instead, we propose a new Distributionally Robust Optimization (DRO) method addressing this issue. The robust optimization problem reduces to solving a second-order cone programming problem. We prove several generalization guarantees for our solution under mild conditions. Extensive numerical experiments demonstrate that our approach outperforms Huber's robust regression approach.
引用
收藏
页码:352 / 357
页数:6
相关论文
共 21 条
[1]  
Bartlett P. L., 2003, Journal of Machine Learning Research, V3, P463, DOI 10.1162/153244303321897690
[2]   FITTING OF POWER-SERIES, MEANING POLYNOMIALS, ILLUSTRATED ON BAND-SPECTROSCOPIC DATA [J].
BEATON, AE ;
TUKEY, JW .
TECHNOMETRICS, 1974, 16 (02) :147-185
[3]   Data-driven estimation in equilibrium using inverse optimization [J].
Bertsimas, Dimitris ;
Gupta, Vishal ;
Paschalidis, Ioannis Ch. .
MATHEMATICAL PROGRAMMING, 2015, 153 (02) :595-633
[4]   Robust solutions to least-squares problems with uncertain data [J].
ElGhaoui, L ;
Lebret, H .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (04) :1035-1064
[5]  
Esfahani P.M., 2015, Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations
[6]  
FAIR RC, 1974, ANN ECON SOC MEAS, V3, P667
[7]   On the rate of convergence in Wasserstein distance of the empirical measure [J].
Fournier, Nicolas ;
Guillin, Arnaud .
PROBABILITY THEORY AND RELATED FIELDS, 2015, 162 (3-4) :707-738
[8]  
Gao R., 2016, Distributionally robust stochastic optimization withWasserstein distance, DOI [arXiv:1604.02199v2, 10.48550/ arXiv.1604.02199, DOI 10.48550/ARXIV.1604.02199]
[9]   SIMPLE METHOD FOR ROBUST REGRESSION [J].
HINICH, MJ ;
TALWAR, PP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (349) :113-119
[10]  
Hu Zhaolin, 2013, Kullback-Leibler divergence constrained distributionally robust optimization