Automatic calculation of left ventricular volume in magnetic resonance imaging using an image-based clustering approach

被引:2
|
作者
Ivanov, Ilia [1 ]
Lomaev, Yuri [1 ]
Barkovskaya, Alexandra [1 ]
机构
[1] Reshetnev Siberian State Univ Sci & Technol, 31 Krasnoyarsky Rabochy Av, Krasnoyarsk 660037, Russia
来源
INTERNATIONAL WORKSHOP ADVANCED TECHNOLOGIES IN MATERIAL SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING - MIP: ENGINEERING - 2019 | 2019年 / 537卷
关键词
SEGMENTATION; MODEL;
D O I
10.1088/1757-899X/537/4/042046
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work we propose an algorithm to automate the process of left ventricular (LV) volume calculation during magnetic resonance imaging (MRI) analysis. The proposed algorithm does the LV segmentation, volume calculation, finds the time frames where the heart is in systole and diastole phase, and calculates LV ejection fraction. The proposed approach has been tested on a dataset containing MRI study results of 500 patients. According to experimental results the root mean square error of LV systolic volume calculation is 21.64 ml, LV diastolic volume - 44.92 ml, ejection fraction - 7.96 %.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Automatic Hippocampus Segmentation of Magnetic Resonance Imaging Images Using Multiple Atlases
    Song, Yihua
    Gong, Zhaoxuan
    Yang, Jinzhu
    Zhao, Dazhe
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (07) : 1750 - 1753
  • [22] Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks
    Jinlian Ma
    Fa Wu
    Tian’an Jiang
    Qiyu Zhao
    Dexing Kong
    International Journal of Computer Assisted Radiology and Surgery, 2017, 12 : 1895 - 1910
  • [23] Automatic Delineation of Gross Tumor Volume Based on Magnetic Resonance Imaging by Performing a Novel Semisupervised Learning Framework in Nasopharyngeal Carcinoma
    Liao, Wenjun
    He, Jinlan
    Luo, Xiangde
    Wu, Mengwan
    Shen, Yuanyuan
    Li, Churong
    Xiao, Jianghong
    Wang, Guotai
    Chen, Nianyong
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 113 (04): : 893 - 902
  • [24] Diagnostic utility of artificial intelligence for left ventricular scar identification using cardiac magnetic resonance imaging-A systematic review
    Jathanna, Nikesh
    Podlasek, Anna
    Sokol, Albert
    Auer, Dorothee
    Chen, Xin
    Jamil-Copley, Shahnaz
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2021, 2 (06): : S21 - S29
  • [25] AUTOMATED EVALUATION OF LEFT VENTRICULAR DIASTOLIC FUNCTION USING VELOCITY-ENCODED MAGNETIC RESONANCE IMAGING: CONVENTIONAL AND NEW PARAMETERS
    Bollache, E.
    Clement-Guinaudeau, S.
    Perdrix, L.
    Ladouceur, M.
    Lefort, M.
    De Cesare, A.
    Herment, A.
    Diebold, B.
    Mousseaux, E.
    Kachenoura, N.
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 500 - 503
  • [26] A Modified Genetic Algorithm Based FCM Clustering Algorithm for Magnetic Resonance Image Segmentation
    Das, Sunanda
    De, Sourav
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON FRONTIERS IN INTELLIGENT COMPUTING: THEORY AND APPLICATIONS, FICTA 2016, VOL 1, 2017, 515 : 435 - 443
  • [27] An automatic generalized Gaussian mixture-based approach for accurate brain tumor segmentation in magnetic resonance imaging analysis
    Lairedj, Khalil Ibrahim
    Chama, Zouaoui
    Bagdaoui, Amina
    Larguech, Samia
    Afenyiveh, Serge Dzo Mawuefa
    Menni, Younes
    AIP ADVANCES, 2025, 15 (03)
  • [28] Automatic detection of neuromelanin and iron in the midbrain nuclei using a magnetic resonance imaging-based brain template
    Jin, Zhijia
    Wang, Ying
    Jokar, Mojtaba
    Li, Yan
    Cheng, Zenghui
    Liu, Yu
    Tang, Rongbiao
    Shi, Xiaofeng
    Zhang, Youmin
    Min, Jihua
    Liu, Fangtao
    He, Naying
    Yan, Fuhua
    Haacke, Ewart Mark
    HUMAN BRAIN MAPPING, 2022, 43 (06) : 2011 - 2025
  • [29] The exactness of left ventricular segmentation in cine magnetic resonance imaging and its impact on systolic function values
    Barbier, C. Ebeling
    Johansson, L.
    Lind, L.
    Ahlstrom, H.
    Bjerner, T.
    ACTA RADIOLOGICA, 2007, 48 (03) : 285 - 291
  • [30] Automatic image-based brick segmentation and crack detection of masonry walls using machine learning
    Loverdos, Dimitrios
    Sarhosis, Vasilis
    AUTOMATION IN CONSTRUCTION, 2022, 140