Automatic calculation of left ventricular volume in magnetic resonance imaging using an image-based clustering approach

被引:2
|
作者
Ivanov, Ilia [1 ]
Lomaev, Yuri [1 ]
Barkovskaya, Alexandra [1 ]
机构
[1] Reshetnev Siberian State Univ Sci & Technol, 31 Krasnoyarsky Rabochy Av, Krasnoyarsk 660037, Russia
来源
INTERNATIONAL WORKSHOP ADVANCED TECHNOLOGIES IN MATERIAL SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING - MIP: ENGINEERING - 2019 | 2019年 / 537卷
关键词
SEGMENTATION; MODEL;
D O I
10.1088/1757-899X/537/4/042046
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work we propose an algorithm to automate the process of left ventricular (LV) volume calculation during magnetic resonance imaging (MRI) analysis. The proposed algorithm does the LV segmentation, volume calculation, finds the time frames where the heart is in systole and diastole phase, and calculates LV ejection fraction. The proposed approach has been tested on a dataset containing MRI study results of 500 patients. According to experimental results the root mean square error of LV systolic volume calculation is 21.64 ml, LV diastolic volume - 44.92 ml, ejection fraction - 7.96 %.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Accurate image-based CSF volume calculation of the lateral ventricles
    Yepes-Calderon, Fernando
    McComb, J. Gordon
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Image-based estimation of the left ventricular cavity volume using deep learning and Gaussian process with cardio-mechanical applications
    Rabbani, Arash
    Gao, Hao
    Lazarus, Alan
    Dalton, David
    Ge, Yuzhang
    Mangion, Kenneth
    Berry, Colin
    Husmeier, Dirk
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 106
  • [3] Automatic Left Ventricular Contour Extraction from Cardiac Magnetic Resonance Images Using Cantilever Beam and Random Walk Approach
    Dakua, Sarada Prasad
    Sahambi, J. S.
    CARDIOVASCULAR ENGINEERING, 2010, 10 (01) : 30 - 43
  • [4] Magnetic Resonance Imaging Brain Image Segmentation Method Based on Adaptive Clustering Algorithm
    Pei, Jialun
    Chen, Weiyang
    Dong, Xiangjun
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (07) : 1629 - 1635
  • [5] A New Approach for Automatic Identification of the Ventricular Boundary in Cine Magnetic Resonance Images
    Wang, Zhenzhou
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (05) : 1139 - 1154
  • [6] Magnetic resonance image-based brain tumour segmentation methods: A systematic review
    Bhalodiya, Jayendra M.
    Keung, Sarah N. Lim Choi
    Arvanitis, Theodoros N.
    DIGITAL HEALTH, 2022, 8
  • [7] Automatic ventricular nuclear magnetic resonance image processing with deep learning
    Yong, Binbin
    Wang, Chen
    Shen, Jun
    Li, Fucun
    Yin, Hang
    Zhou, Rui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (26-27) : 34103 - 34119
  • [8] Left ventricular modelling: a quantitative functional assessment tool based on cardiac magnetic resonance imaging
    Conti, C. A.
    Votta, E.
    Corsi, C.
    De Marchi, D.
    Tarroni, G.
    Stevanella, M.
    Lombardi, M.
    Parodi, O.
    Caiani, E. G.
    Redaelli, A.
    INTERFACE FOCUS, 2011, 1 (03) : 384 - 395
  • [9] Magnetic resonance image tissue classification using an automatic method
    Yazdani, Sepideh
    Yusof, Rubiyah
    Riazi, Amirhosein
    Karimian, Alireza
    DIAGNOSTIC PATHOLOGY, 2014, 9 : 207
  • [10] Magnetic Resonance Imaging Quantification of Left Ventricular Dysfunction Following Coronary Microembolization
    Carlsson, Marcus
    Martin, Alastair J.
    Ursell, Philip C.
    Saloner, David
    Saeed, Maythem
    MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (03) : 595 - 602