Exact Solution for the Stationary Kardar-Parisi-Zhang Equation

被引:109
作者
Imamura, Takashi [1 ]
Sasamoto, Tomohiro [2 ]
机构
[1] Univ Tokyo, Adv Sci & Technol Res Ctr, Meguro Ku, Tokyo 1538904, Japan
[2] Chiba Univ, Dept Math & Informat, Inage Ku, Chiba 2638522, Japan
关键词
SIMPLE EXCLUSION PROCESS; GROWING INTERFACES; SCALING FUNCTIONS; INITIAL CONDITION; RANDOM MATRICES; 1+1 DIMENSIONS; BETHE-ANSATZ; FREE-ENERGY; KPZ; DISTRIBUTIONS;
D O I
10.1103/PhysRevLett.108.190603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the first exact solution for the stationary one-dimensional Kardar-Parisi-Zhang equation. A formula for the distribution of the height is given in terms of a Fredholm determinant, which is valid for any finite time t. The expression is explicit and compact enough so that it can be evaluated numerically. Furthermore, by extending the same scheme, we find an exact formula for the stationary two-point correlation function.
引用
收藏
页数:5
相关论文
共 42 条
[1]   Intermediate Disorder Regime for Directed Polymers in Dimension 1+1 [J].
Alberts, Tom ;
Khanin, Kostya ;
Quastel, Jeremy .
PHYSICAL REVIEW LETTERS, 2010, 105 (09)
[2]   Probability Distribution of the Free Energy of the Continuum Directed Random Polymer in 1+1 Dimensions [J].
Amir, Gideon ;
Corwin, Ivan ;
Quastel, Jeremy .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (04) :466-537
[3]  
[Anonymous], 1998, Fractals, scaling and growth far from equilibrium
[4]  
[Anonymous], 1995, FRACTAL CONCEPT SURF, DOI DOI 10.1017/CBO9780511599798
[5]  
Baik J., 2001, RANDOM MATRIX MODELS
[6]  
Baik J, 2010, COMMUN PUR APPL MATH, V63, P1017
[7]   Stochastic burgers and KPZ equations from particle systems [J].
Bertini, L ;
Giacomin, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (03) :571-607
[8]  
Borodin A., ARXIV11114408
[9]   Free-energy distribution of the directed polymer at high temperature [J].
Calabrese, P. ;
Le Doussal, P. ;
Rosso, A. .
EPL, 2010, 90 (02)
[10]   Exact Solution for the Kardar-Parisi-Zhang Equation with Flat Initial Conditions [J].
Calabrese, Pasquale ;
Le Doussal, Pierre .
PHYSICAL REVIEW LETTERS, 2011, 106 (25)