Search engine processor: Filtering and organizing peptide spectrum matches

被引:99
作者
Carvalho, Paulo C. [1 ,2 ]
Fischer, Juliana S. G. [1 ,2 ]
Xu, Tao [3 ]
Cociorva, Daniel [3 ]
Balbuena, Tiago S. [4 ]
Valente, Richard H. [2 ]
Perales, Jonas [2 ]
Yates, John R., III [3 ]
Barbosa, Valmir C. [5 ]
机构
[1] Fiocruz MS, Carlos Chagas Inst, BR-81350010 Curitiba, Parana, Brazil
[2] Inst Oswaldo Cruz, Lab Toxinol, BR-20001 Rio De Janeiro, Brazil
[3] Scripps Res Inst, Dept Physiol Chem, La Jolla, CA 92037 USA
[4] Univ Missouri, Dept Biochem, Columbia, MO USA
[5] Univ Fed Rio de Janeiro, COPPE, Syst Engn & Comp Sci Program, BR-21945 Rio De Janeiro, Brazil
基金
美国国家卫生研究院;
关键词
Bioinformatics; Filtering; Quality; Semi-labeled decoy approach; Sharing; Shotgun proteomics; TANDEM MASS-SPECTROMETRY; STATISTICAL-MODEL; GENE-ONTOLOGY; IDENTIFICATION; PROTEOMICS; TOOL; PROTEINS; MS/MS;
D O I
10.1002/pmic.201100529
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The search engine processor (SEPro) is a tool for filtering, organizing, sharing, and displaying peptide spectrum matches. It employs a novel three-tier Bayesian approach that uses layers of spectrum, peptide, and protein logic to lead the data to converge to a single list of reliable protein identifications. SEPro is integrated into the PatternLab for proteomics environment, where an arsenal of tools for analyzing shotgun proteomic data is provided. By using the semi-labeled decoy approach for benchmarking, we show that SEPro significantly outperforms a commercially available competitor.
引用
收藏
页码:944 / 949
页数:6
相关论文
共 19 条
  • [1] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [2] Can the false-discovery rate be misleading?
    Barboza, Rodrigo
    Cociorva, Daniel
    Xu, Tao
    Barbosa, Valmir C.
    Perales, Jonas
    Valente, Richard H.
    Franca, Felipe M. G.
    Yates, John R., III
    Carvalho, Paulo C.
    [J]. PROTEOMICS, 2011, 11 (20) : 4105 - 4108
  • [3] Carvalho Paulo C, 2010, Curr Protoc Bioinformatics, VChapter 13, DOI 10.1002/0471250953.bi1313s30
  • [4] Analyzing marginal cases in differential shotgun proteomics
    Carvalho, Paulo C.
    Fischer, Juliana S. G.
    Perales, Jonas
    Yates, John R.
    Barbosa, Valmir C.
    Bareinboim, Elias
    [J]. BIOINFORMATICS, 2011, 27 (02) : 275 - 276
  • [5] YADA: a tool for taking the most out of high-resolution spectra
    Carvalho, Paulo C.
    Xu, Tao
    Han, Xuemei
    Cociorva, Daniel
    Barbosa, Valmir C.
    Yates, John R., III
    [J]. BIOINFORMATICS, 2009, 25 (20) : 2734 - 2736
  • [6] GO Explorer: A gene-ontology tool to aid in the interpretation of shotgun proteomics data
    Carvalho, Paulo C.
    Fischer, Juliana S. G.
    Chen, Emily I.
    Domont, Gilberto B.
    Carvalho, Maria G. C.
    Degrave, Wim M.
    Yates, John R., III
    Barbosa, Valmir C.
    [J]. PROTEOME SCIENCE, 2009, 7
  • [7] PatternLab for proteomics: a tool for differential shotgun proteomics
    Carvalho, Paulo C.
    Fischer, Juliana Sg
    Chen, Emily I.
    Yates, John R., III
    Barbosa, Valmir C.
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [8] Cociorva D., 2006, CURR PROTOC BIOINFOR, P1341
  • [9] Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics
    Deutsch, Eric W.
    Lam, Henry
    Aebersold, Ruedi
    [J]. PHYSIOLOGICAL GENOMICS, 2008, 33 (01) : 18 - 25
  • [10] AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE
    ENG, JK
    MCCORMACK, AL
    YATES, JR
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) : 976 - 989