Biodegradable PLA-based composites modified by POSS particles

被引:14
作者
Chen, Yi [1 ,2 ]
Liu, Shuichang [1 ,2 ]
Zhou, Yueyun [1 ,3 ]
Zeng, Guangsheng [1 ,2 ]
Liu, Wenyong [2 ]
机构
[1] Hunan Univ Technol, Hunan Prov Engn Lab Key Tech Nonmetall Packaging, Zhuzhou, Peoples R China
[2] Hunan Univ Technol, Hunan Prov Key Lab Biomass Fiber Funct Mat, Zhuzhou, Peoples R China
[3] Hunan Univ Technol, Coll Urban & Environm Sci, Hunan Prov Key Lab Comprehens Utilizat Agr & Anim, Zhuzhou, Peoples R China
来源
POLYMER-PLASTICS TECHNOLOGY AND MATERIALS | 2020年 / 59卷 / 09期
关键词
PLA; composites; POSS; reactive extrusion; POLYLACTIC ACID; POLY(LACTIC ACID); ALIPHATIC POLYCARBONATES; MECHANICAL-PROPERTIES; TOUGHNESS;
D O I
10.1080/25740881.2020.1719139
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The poly(lactic acid)(PLA)/aliphatic poly(carbonate)(PPC)/polyethylene glycol-polyhedral oligomeric silsesquioxane (PEG-POSS) composites were prepared by reactive melting extrusion. The effect of various components on the mechanical, thermal, rheological, and hydrophilic properties of composites was systematically studied by means of various characterization methods. The results showed that, with the increase of PPC content, the toughness of composites improves significantly, while the strength decreases. Reactive extrusion and adding PEG-POSS could enhance the compatibility and adjust the crystallization of composites effectively. When the proportion of PPC and PEG-POSS in composites is 20-40wt% and 4wt%, respectively, the composites own the best comprehensive performance.
引用
收藏
页码:998 / 1009
页数:12
相关论文
共 24 条
  • [1] Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties
    Balakrishnan, Harintharavimal
    Hassan, Azman
    Wahit, Mat Uzir
    Yussuf, A. A.
    Razak, Shamsul Bahri Abdul
    [J]. MATERIALS & DESIGN, 2010, 31 (07) : 3289 - 3298
  • [2] Drumright RE, 2000, ADV MATER, V12, P1841, DOI 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO
  • [3] 2-E
  • [4] Construction of functional aliphatic polycarbonates for biomedical applications
    Feng, Jun
    Zhuo, Ren-Xi
    Zhang, Xian-Zheng
    [J]. PROGRESS IN POLYMER SCIENCE, 2012, 37 (02) : 211 - 236
  • [5] Effects of chain-extending stabilizer on bioplastic poly(lactic acid)/polyamide blends compatibilized by reactive extrusion
    Gug, JeongIn
    Soule, James
    Tan, Bin
    Sobkowicz, Margaret J.
    [J]. POLYMER DEGRADATION AND STABILITY, 2018, 153 : 118 - 129
  • [6] Properties and medical applications of polylactic acid: A review
    Hamad, K.
    Kaseem, M.
    Yang, H. W.
    Deri, F.
    Ko, Y. G.
    [J]. EXPRESS POLYMER LETTERS, 2015, 9 (05): : 435 - 455
  • [7] Preparation and Characterization of Biodegradable Polylactide/Thermoplastic Polyurethane Elastomer Blends
    Han, Juan-Juan
    Huang, Han-Xiong
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 120 (06) : 3217 - 3223
  • [8] Study of biodegradable polyactide/poly(butylene adipate-co-terephthalate) blends
    Jiang, L
    Wolcott, MP
    Zhang, JW
    [J]. BIOMACROMOLECULES, 2006, 7 (01) : 199 - 207
  • [9] POSS related polymer nanocomposites
    Kuo, Shiao-Wei
    Chang, Feng-Chih
    [J]. PROGRESS IN POLYMER SCIENCE, 2011, 36 (12) : 1649 - 1696
  • [10] Compatibilizing effects for improving mechanical properties of biodegradable poly (lactic acid) and polycarbonate blends
    Lee, Jae Bok
    Lee, Yun Kyun
    Choi, Gi Dae
    Na, Sang Wook
    Park, Tae Sung
    Kim, Woo Nyon
    [J]. POLYMER DEGRADATION AND STABILITY, 2011, 96 (04) : 553 - 560