On the approximability of numerical taxonomy (fitting distances by tree metrics)

被引:73
作者
Agarwala, R
Bafna, V
Farach, M
Paterson, M
Thorup, M
机构
[1] Rutgers State Univ, DIMACS, Piscataway, NJ 08855 USA
[2] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08855 USA
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[4] Univ Copenhagen, Dept Comp Sci, DK-2100 Copenhagen O, Denmark
关键词
approximation algorithm; tree metric; taxonomy;
D O I
10.1137/S0097539795296334
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of fitting an n x n distance matrix D by a tree metric T. Let epsilon be the distance to the closest tree metric under the L-infinity norm; that is, epsilon = min(T) {parallel to T ? D parallel to infinity}. First we present an O(n(2)) algorithm for finding a tree metric T such that parallel to T ? D parallel to infinity less than or equal to 3 epsilon. Second we show that it is NP-hard to find a tree metric T such that parallel to T ? D parallel to infinity < 9/8 epsilon. This paper presents the first algorithm for this problem with a performance guarantee.
引用
收藏
页码:1073 / 1085
页数:13
相关论文
共 10 条
[1]  
Baire R., 1905, Lecons sur les fonctions discontinues
[2]  
Barthelemy J.P., 1991, TREES PROXIMITY REPR
[3]  
Buneman P., 1971, Mathematics in the Archeological and Historical Sciences, P387
[4]   PHYLOGENETIC ANALYSIS - MODELS AND ESTIMATION PROCEDURES [J].
CAVALLISFORZA, LL ;
EDWARDS, AWF .
EVOLUTION, 1967, 21 (03) :550-+
[6]   A ROBUST MODEL FOR FINDING OPTIMAL EVOLUTIONARY TREES [J].
FARACH, M ;
KANNAN, S ;
WARNOW, T .
ALGORITHMICA, 1995, 13 (1-2) :155-179
[7]  
Sneath P. H. A., NUMERICAL TAXONOMY
[8]  
Swofford David L., 1990, P411
[9]  
WAREHAM HT, 1993, 9301 MEM U NEWF
[10]   ADDITIVE EVOLUTIONARY TREES [J].
WATERMAN, MS ;
SMITH, TF ;
SINGH, M ;
BEYER, WA .
JOURNAL OF THEORETICAL BIOLOGY, 1977, 64 (02) :199-213