Estimating the Zagreb indices and the spectral radius of triangle- and quadrangle-free connected graphs

被引:25
作者
Yamaguchi, Seiichi [1 ]
机构
[1] Osaka Univ, Dept Math, Grad Sch Sci, Osaka 5600043, Japan
关键词
D O I
10.1016/j.cplett.2008.05.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The first (M-1) and second (M-2) Zagreb indices and the spectral radius (rho) are topological indices. This Letter presents upper bounds for these indices of triangle- and quadrangle-free connected graphs, in terms of the number of vertices (n), number of edges (m), and the radius (r). These bounds are: M-1(G) <= n(n + 1 - r), M-2(G) <= m(n + 1 - r), rho <= root n + 1 -r, and we determine the graphs for which the bounds are attained. (c) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:396 / 398
页数:3
相关论文
共 18 条
[1]   Graphs of diameter two with no 4-circuits [J].
Bondy, JA ;
Erdos, P ;
Fajtlowicz, S .
DISCRETE MATHEMATICS, 1999, 200 (1-3) :21-25
[2]  
Deng HY, 2007, MATCH-COMMUN MATH CO, V57, P597
[3]   Novel chirality descriptors derived from molecular topology [J].
Golbraikh, A ;
Bonchev, D ;
Tropsha, A .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2001, 41 (01) :147-158
[4]   Novel ZE-isomerism descriptors derived from molecular topology and their application to QSAR analysis [J].
Golbraikh, A ;
Bonchev, D ;
Tropsha, A .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (04) :769-787
[5]  
Gutman I, 2004, MATCH-COMMUN MATH CO, P83
[6]   GRAPH THEORY AND MOLECULAR-ORBITALS - TOTAL PI-ELECTRON ENERGY OF ALTERNANT HYDROCARBONS [J].
GUTMAN, I ;
TRINAJSTIC, N .
CHEMICAL PHYSICS LETTERS, 1972, 17 (04) :535-538
[7]   GRAPH THEORY AND MOLECULAR-ORBITALS .12. ACYCLIC POLYENES [J].
GUTMAN, I ;
RUSCIC, B ;
TRINAJSTIC, N ;
WILCOX, CF .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (09) :3399-3405
[8]  
Hansen P, 2007, CROAT CHEM ACTA, V80, P165
[9]   ON MOORE GRAPHS WITH DIAMETER-2 AND DIAMETER-3 [J].
HOFFMAN, AJ ;
SINGLETON, RR .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (05) :497-504
[10]  
Liu BL, 2007, UTILITAS MATHEMATICA, V74, P239