Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas

被引:57
作者
Askari, Sadegh [1 ,2 ]
Haq, Atta Ul [1 ]
Macias-Montero, Manuel [1 ]
Levchenko, Igor [3 ]
Yu, Fengjiao [4 ]
Zhou, Wuzong [4 ]
Ostrikov, Kostya [5 ,6 ,7 ]
Maguire, Paul [1 ]
Svrcek, Vladimir [8 ]
Mariotti, Davide [1 ]
机构
[1] Univ Ulster, Nanotechnol & Integrated Bioengn Ctr, Coleraine BT37 0QB, Londonderry, North Ireland
[2] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
[3] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4000, Australia
[4] Univ St Andrews, Sch Chem, EaStChem, St Andrews KY16 9ST, Fife, Scotland
[5] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4000, Australia
[6] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4000, Australia
[7] CSIRO, CSIRO QUT Joint Sustainable Proc & Devices Lab, POB 218, Lindfield, NSW 2070, Australia
[8] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta, Cent 2, Tsukuba, Ibaraki, Japan
基金
欧盟第七框架计划; 英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
3C-SIC NANOCRYSTALS; TETRAMETHYLSILANE; LUMINESCENCE; DEPOSITION; FLUORESCENT;
D O I
10.1039/c6nr03702j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly size-controllable synthesis of free-standing perfectly crystalline silicon carbide nanocrystals has been achieved for the first time through a plasma-based bottom-up process. This low-cost, scalable, ligand-free atmospheric pressure technique allows fabrication of ultra-small (down to 1.5 nm) nanocrystals with very low level of surface contamination, leading to fundamental insights into optical properties of the nanocrystals. This is also confirmed by their exceptional photoluminescence emission yield enhanced by more than 5 times by reducing the nanocrystals sizes in the range of 1-5 nm, which is attributed to quantum confinement in ultra-small nanocrystals. This method is potentially scalable and readily extendable to a wide range of other classes of materials. Moreover, this ligand-free process can produce colloidal nanocrystals by direct deposition into liquid, onto biological materials or onto the substrate of choice to form nanocrystal films. Our simple but efficient approach based on non-equilibrium plasma environment is a response to the need of most efficient bottom-up processes in nanosynthesis and nanotechnology.
引用
收藏
页码:17141 / 17149
页数:9
相关论文
共 48 条
[1]  
[Anonymous], 2014, NAT NANOTECHNOL, V9, P325
[2]   Crystalline Si nanoparticles below crystallization threshold: Effects of collisional heating in non-thermal atmospheric-pressure microplasmas [J].
Askari, S. ;
Levchenko, I. ;
Ostrikov, K. ;
Maguire, P. ;
Mariotti, D. .
APPLIED PHYSICS LETTERS, 2014, 104 (16)
[3]   Identification of Luminescence Centers in Molecular-Sized Silicon Carbide Nanocrystals [J].
Beke, David ;
Janosi, Tibor Z. ;
Somogyi, Balint ;
Major, Daniel A. ;
Szekrenyes, Zsolt ;
Erostyak, Janos ;
Kamaras, Katalin ;
Gali, Adam .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (01) :685-691
[4]   Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals [J].
Beke, David ;
Szekrenyes, Zsolt ;
Czigany, Zsolt ;
Kamaras, Katalin ;
Gali, Adam .
NANOSCALE, 2015, 7 (25) :10982-10988
[5]   Silicon carbide quantum dots for bioimaging [J].
Beke, David ;
Szekrenyes, Zsolt ;
Palfi, Denes ;
Rona, Gergely ;
Balogh, Istvan ;
Maak, Pal Andor ;
Katona, Gergely ;
Czigany, Zsolt ;
Kamaras, Katalin ;
Rozsa, Balazs ;
Buday, Laszlo ;
Vertessy, Beata ;
Gali, Adam .
JOURNAL OF MATERIALS RESEARCH, 2013, 28 (02) :205-209
[6]   Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching [J].
Beke, David ;
Szekrenyes, Zsolt ;
Balogh, Istvan ;
Veres, Miklos ;
Fazakas, Eva ;
Varga, Lajos K. ;
Kamaras, Katalin ;
Czigany, Zsolt ;
Gali, Adam .
APPLIED PHYSICS LETTERS, 2011, 99 (21)
[7]   Application of 3C-SiC quantum dots for living cell imaging [J].
Botsoa, J. ;
Lysenko, V. ;
Geloen, A. ;
Marty, O. ;
Bluet, J. M. ;
Guillot, G. .
APPLIED PHYSICS LETTERS, 2008, 92 (17)
[8]  
Castelletto S, 2014, NAT MATER, V13, P151, DOI [10.1038/nmat3806, 10.1038/NMAT3806]
[9]   Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase [J].
Chiang, Wei-Hung ;
Richmonds, Carolyn ;
Sankaran, R. Mohan .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (03)
[10]   EFFECT OF POROSITY ON INFRARED-ABSORPTION SPECTRA OF SILICON DIOXIDE [J].
CHOU, JS ;
LEE, SC .
JOURNAL OF APPLIED PHYSICS, 1995, 77 (04) :1805-1807