FADA: Feature Aligned Domain Adaptive Object Detection in Remote Sensing Imagery

被引:27
作者
Xu, Tao [1 ,2 ,3 ,4 ]
Sun, Xian [1 ,2 ,3 ,4 ]
Diao, Wenhui [1 ,4 ]
Zhao, Liangjin [1 ,4 ]
Fu, Kun [1 ,2 ,3 ,4 ]
Wang, Hongqi [1 ,4 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Detectors; Object detection; Sensors; Pipelines; Training; Domain adaptation; feature alignment; object detection; remote sensing imagery; ADAPTATION;
D O I
10.1109/TGRS.2022.3147224
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning-based object detectors have been widely adopted in the field of remote sensing imagery interpretation. These detectors heavily depend on the expensive large-scale labeled datasets, while the scarce remote sensing datasets limit the performance. The domain adaptive object detection can alleviate this problem. However, it struggles with the confusing feature's alignment, damaging the domain generalization performance, especially for the remote sensing scene with sparse objects and diverse backgrounds. For that reason, a semisynthetic data generator (SDG) is proposed to automatically generate the remote sensing dataset with low cost and replace the real-world training dataset, a feature aligned domain adaptive object detector (FADA) is proposed to enhance the domain adaptation among the cross-domain remote sensing images. The FADA contains two proposed modules in addition to the base detector: an adversarial-based foreground alignment (AFA) and a prototype-based confusing feature alignment (PCFA). The AFA aligns the cross-domain foreground feature by adversarial training (AT), and it can filter the noisy background feature that is not suitable to transfer. Then, the PCFA adaptively aligns the confusing background and foreground feature, further promoting the domain adaptation performance. Comprehensive experiments validate the effectiveness of the proposed method. Compared with the baseline model trained on the semisynthetic source dataset, our FADA improves the generalized performance on the real-world target dataset a large-scale Dataset for Object deTection in Aerial images (DOTA) by 15.7% average precision (AP) and achieves state-of-the-art results.
引用
收藏
页数:16
相关论文
共 63 条
[1]   Cross-Domain Car Detection Using Unsupervised Image-to-Image Translation: From Day to Night [J].
Arruda, Vinicius F. ;
Paixao, Thiago M. ;
Berriel, Rodrigo F. ;
De Souza, Alberto F. ;
Badue, Claudine ;
Sebe, Nicu ;
Oliveira-Santos, Thiago .
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
[2]   A theory of learning from different domains [J].
Ben-David, Shai ;
Blitzer, John ;
Crammer, Koby ;
Kulesza, Alex ;
Pereira, Fernando ;
Vaughan, Jennifer Wortman .
MACHINE LEARNING, 2010, 79 (1-2) :151-175
[3]   Harmonizing Transferability and Discriminability for Adapting Object Detectors [J].
Chen, Chaoqi ;
Zheng, Zebiao ;
Ding, Xinghao ;
Huang, Yue ;
Dou, Qi .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :8866-8875
[4]  
Chen K., 2019, CoRR abs/1906.07155
[5]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[6]   Borrow from Anywhere: Pseudo Multi-modal Object Detection in Thermal Imagery [J].
Devaguptapu, Chaitanya ;
Akolekar, Ninad ;
Sharma, Manuj M. ;
Balasubramanian, Vineeth N. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :1029-1038
[7]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853
[8]   Few-Shot SAR Target Classification via Metalearning [J].
Fu, Kun ;
Zhang, Tengfei ;
Zhang, Yue ;
Wang, Zhirui ;
Sun, Xian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[9]   Meta-SSD: Towards Fast Adaptation for Few-Shot Object Detection With Meta-Learning [J].
Fu, Kun ;
Zhang, Tengfei ;
Zhang, Yue ;
Yan, Menglong ;
Chang, Zhonghan ;
Zhang, Zhengyuan ;
Sun, Xian .
IEEE ACCESS, 2019, 7 :77597-77606
[10]   Virtual Worlds as Proxy for Multi-Object Tracking Analysis [J].
Gaidon, Adrien ;
Wang, Qiao ;
Cabon, Yohann ;
Vig, Eleonora .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4340-4349