The Lissajous-Kustaanheimo-Stiefel transformation

被引:8
作者
Breiter, Slawomir [1 ]
Langner, Krzysztof [1 ]
机构
[1] Adam Mickiewicz Univ, Astron Observ Inst, Fac Phys, Sloneczna 36, PL-61286 Poznan, Poland
关键词
Perturbed Kepler problem; Regularization; KS variables; Lissajous transformation; Lidov-Kozai problem; PERTURBATIONS;
D O I
10.1007/s10569-019-9887-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Kustaanheimo-Stiefel transformation of the Kepler problem with a time-dependent perturbation converts it into a perturbed isotropic oscillator of four-and-a-half degrees of freedom with additional constraint known as bilinear invariant. Appropriate action-angle variables for the constrained oscillator are required to apply canonical perturbation techniques in the perturbed problem. The Lissajous-Kustaanheimo-Stiefel (LKS) transformation is proposed, leading to the action-angle set which is free from singularities of the LCF variables earlier proposed by Zhao. One of the actions is the bilinear invariant, which allows the reduction back to the three-and-a-half degrees of freedom. The transformation avoids any reference to the notion of the orbital plane, which allowed to obtain the angles properly defined not only for most of the circular or equatorial orbits, but also for the degenerate, rectilinear ellipses. The Lidov-Kozai problem is analysed in terms of the LKS variables, which allow a direct study of stability for all equilibria except the circular equatorial and the polar radial orbits.
引用
收藏
页数:28
相关论文
共 30 条
[1]  
Arnold VI., 1997, Mathematical Aspects of Classical and Celestial Mechanics
[2]   The extended Lissajous-Levi-Civita transformation [J].
Breiter, Slawomir ;
Langner, Krzysztof .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (10)
[3]   Kustaanheimo-Stiefel transformation with an arbitrary defining vector [J].
Breiter, Slawomir ;
Langner, Krzysztof .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2017, 128 (2-3) :323-342
[4]  
Cordani B., 2003, THE KEPLER PROBLEM
[5]  
Crespo F., 2015, 150202196 ARXIV
[6]   LINEARIZATION - LAPLACE VS STIEFEL [J].
DEPRIT, A ;
ELIPE, A ;
FERRER, S .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 58 (02) :151-201
[7]  
Deprit A, 1994, DYNAMICS ASTROMETRY, P159
[8]  
Deprit A, 1991, CELEST MECH DYN ASTR, V51, P271, DOI 10.1007/BF00051694
[9]  
Deprit A, 1991, CELEST MECH DYN ASTR, V51, P201, DOI 10.1007/BF00051691
[10]   Relative equilibria and bifurcations in the generalized van der Waals 4D oscillator [J].
Diaz, G. ;
Egea, J. ;
Ferrer, S. ;
van der Meer, J. C. ;
Vera, J. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (16) :1610-1625