Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function

被引:63
作者
Choi, Junesang [2 ]
Anderson, P. J. [1 ]
Srivastava, H. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] Dongguk Univ, Dept Math, Kyongju 780714, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
gamma function; multiple Gamma functions; Riemann Zeta function; Hurwitz Zeta function; Hurwitz-Lerch Zeta function; multiple Hurwitz-Lerch Zeta function; q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials and numbers of higher order; series associated with the Zeta function;
D O I
10.1016/j.amc.2007.10.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first investigate several further interesting properties of the multiple Hurwitz-Lerch Zeta function Phi(n)(z, s, a) which was introduced recently by Choi et al. [ J. Choi, D. S. Jang, H. M. Srivastava, A generalization of the Hurwitz-Lerch Zeta function, Integral Transform. Spec. Funct., 19 ( 2008)]. We then introduce and investigate some q-extensions of the multiple Hurwitz-Lerch Zeta function Phi(n)( z, s, a), the Apostol-Bernoulli polynomials B-k((n)) (x; lambda) of order n, and the Apostol-Euler polynomials E-k((n)) (x; lambda) of order n. Relevant connections of the results presented here with those obtained in earlier works are also indicated precisely. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:723 / 737
页数:15
相关论文
共 60 条
[1]  
[Anonymous], SERIES ASSOCIATED ZE
[2]  
[Anonymous], 1975, TABLE SERIES PRODUCT
[3]  
[Anonymous], J FRACT CALC
[4]  
[Anonymous], ADV STUD CONT MATH
[5]  
[Anonymous], 2006, ADV STUD CONT MATH
[6]  
[Anonymous], ADV STUD CONT MATH
[7]  
APOSTOL TM, 1951, B AM MATH SOC, V57, P370
[8]   SOME SERIES INVOLVING THE RIEMANN-ZETA FUNCTION [J].
APOSTOL, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 5 (02) :239-243
[9]  
BARNES EW, 1904, PHILOS T R SOC A, V199, P374
[10]   Q-BERNOULLI NUMBERS AND POLYNOMIALS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) :987-1000