Method-of-moments formulation for the analysis of plasmonic nano-optical antennas

被引:87
作者
Taboada, Jose M. [2 ]
Rivero, Javier [2 ]
Obelleiro, Fernando [1 ]
Araujo, Marta G. [1 ]
Landesa, Luis [2 ]
机构
[1] ETSE Telecomunicac, Dept Teoria Sinal & Comunicac, Vigo 36310, Spain
[2] Univ Extremadura, Escuela Politecn, Dept Tecnol Comp & Comunicac, Caceres 10003, Spain
关键词
YAGI-UDA ANTENNA; SINGLE-MOLECULE FLUORESCENCE; FAST MULTIPOLE ALGORITHM; ELECTROMAGNETIC SCATTERING; INTEGRAL-EQUATION; MAXWELLS EQUATIONS; DIELECTRIC OBJECTS; NEAR-FIELD; NANOANTENNAS; EMISSION;
D O I
10.1364/JOSAA.28.001341
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a surface integral equation (SIE) to model the electromagnetic behavior of metallic objects at optical frequencies. The electric and magnetic current combined field integral equation considering both tangential and normal equations is applied. The SIE is solved by using a method-of-moments (MoM) formulation. The SIE-MoM approach is applied only on the material boundary surfaces and interfaces, avoiding the cumbersome volumetric discretization of the objects and the surrounding space required in differential-equation formulations. Some canonical examples have been analyzed, and the results have been compared with analytical reference solutions in order to prove the accuracy of the proposed method. Finally, two plasmonic Yagi-Uda nanoantennas have been analyzed, illustrating the applicability of the method to the solution of real plasmonic problems. (C) 2011 Optical Society of America
引用
收藏
页码:1341 / 1348
页数:8
相关论文
共 53 条
[1]   Optical properties of coupled metallic nanorods for field-enhanced spectroscopy [J].
Aizpurua, J ;
Bryant, GW ;
Richter, LJ ;
de Abajo, FJG ;
Kelley, BK ;
Mallouk, T .
PHYSICAL REVIEW B, 2005, 71 (23)
[2]   SUPERCOMPUTER AWARE APPROACH FOR THE SOLUTION OF CHALLENGING ELECTROMAGNETIC PROBLEMS [J].
Araujo, M. G. ;
Taboada, J. M. ;
Obelleiro, F. ;
Bertolo, J. M. ;
Landesa, L. ;
Rivero, J. ;
Rodriguez, J. L. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2010, 101 :241-256
[3]  
Balanis C.A., 2011, Antenna theory: analysis and design, V3rd
[4]   Spectral dependence of single molecule fluorescence enhancement [J].
Bharadwaj, Palash ;
Novotny, Lukas .
OPTICS EXPRESS, 2007, 15 (21) :14266-14274
[5]   Optical Antennas [J].
Bharadwaj, Palash ;
Deutsch, Bradley ;
Novotny, Lukas .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :438-483
[6]   Plasmonics - Engineering optical nanoantennas [J].
Brongersma, Mark L. .
NATURE PHOTONICS, 2008, 2 (05) :270-272
[7]   SURFACE FORMULATION FOR CHARACTERISTIC MODES OF MATERIAL BODIES [J].
CHANG, Y ;
HARRINGTON, RF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1977, 25 (06) :789-795
[8]   Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna [J].
Curto, Alberto G. ;
Volpe, Giorgio ;
Taminiau, Tim H. ;
Kreuzer, Mark P. ;
Quidant, Romain ;
van Hulst, Niek F. .
SCIENCE, 2010, 329 (5994) :930-933
[9]   Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission [J].
Devilez, Alexis ;
Stout, Brian ;
Bonod, Nicolas .
ACS NANO, 2010, 4 (06) :3390-3396
[10]   A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies [J].
Donepudi, KAC ;
Jin, JM ;
Chew, WC .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (10) :2814-2821