MFDGCN: Multi-Stage Spatio-Temporal Fusion Diffusion Graph Convolutional Network for Traffic Prediction

被引:8
|
作者
Cui, Zhengyan [1 ]
Zhang, Junjun [1 ]
Noh, Giseop [2 ]
Park, Hyun Jun [2 ]
机构
[1] Cheongju Univ, Dept Comp Informat Engn, Cheongju 28503, South Korea
[2] Cheongju Univ, Div Software Convergence, Cheongju 28503, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 05期
关键词
traffic prediction; spatio-temporal prediction; graph convolutional network; temporal convolutional network; multi-head attention; NEURAL-NETWORKS; FLOW;
D O I
10.3390/app12052688
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traffic prediction is a popular research topic in the field of Intelligent Transportation System (ITS), as it can allocate resources more reasonably, relieve traffic congestion, and improve road traffic efficiency. Graph neural networks are widely used in traffic prediction because they are good at dealing with complex nonlinear structures. Existing traffic prediction studies use distance-based graphs to represent spatial relationships, which ignores the deep connections between non-adjacent spatio-temporal information. The use of a simple approach to fuse spatio-temporal information is not conducive to obtaining long-term deep spatio-temporal dependencies. Therefore, we propose a new deep learning model Multi-Stage Spatio-Temporal Fusion Diffusion Graph Convolutional Network (MFDGCN). It generates multiple static and dynamic spatio-temporal association graphs to enhance features and adopts the multi-stage hybrid spatio-temporal fusion method. This promotes the effective fusion of a spatio-temporal multimodal and uses the diffuse convolution method to model the graph structure and time series in traffic prediction, respectively. The model can better predict both long and short-term traffic simultaneously. We evaluated MFDGCN using real road network traffic data and it shows good performance.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Multi-stage attention spatial-temporal graph networks for traffic prediction
    Yin, Xueyan
    Wu, Genze
    Wei, Jinze
    Shen, Yanming
    Qi, Heng
    Yin, Baocai
    NEUROCOMPUTING, 2021, 428 : 42 - 53
  • [22] STEFT: Spatio-Temporal Embedding Fusion Transformer for Traffic Prediction
    Cui, Xiandai
    Lv, Hui
    ELECTRONICS, 2024, 13 (19)
  • [23] Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting
    Zheng, Chuanpan
    Fan, Xiaoliang
    Pan, Shirui
    Jin, Haibing
    Peng, Zhaopeng
    Wu, Zonghan
    Wang, Cheng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 372 - 385
  • [24] Spatio-temporal graph attention networks for traffic prediction
    Ma, Chuang
    Yan, Li
    Xu, Guangxia
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024, 16 (09): : 978 - 988
  • [25] A traffic speed prediction algorithm for dynamic spatio-temporal graph convolutional networks based on attention mechanism
    Chen, Hongwei
    Han, Hui
    Chen, Yifan
    Chen, Zexi
    Gao, Rong
    Li, Xia
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [26] Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction
    Ye, Jihua
    Xue, Shengjun
    Jiang, Aiwen
    DIGITAL COMMUNICATIONS AND NETWORKS, 2022, 8 (03) : 343 - 350
  • [27] Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
    Huo, Guangyu
    Zhang, Yong
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 3855 - 3867
  • [28] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Hong Zhang
    Linlong Chen
    Jie Cao
    Xijun Zhang
    Sunan Kan
    Tianxin Zhao
    International Journal of Automotive Technology, 2023, 24 : 1013 - 1023
  • [29] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Zhang, Hong
    Chen, Linlong
    Cao, Jie
    Zhang, Xijun
    Kan, Sunan
    Zhao, Tianxin
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (04) : 1013 - 1023
  • [30] Forecasting traffic speed using spatio-temporal hybrid dilated graph convolutional network
    Zhang, Lei
    Guo, Quansheng
    Li, Dong
    Pan, Jiaxing
    Wei, Chuyuan
    Lin, Jianxin
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-TRANSPORT, 2021, 177 (02) : 80 - 89