MFDGCN: Multi-Stage Spatio-Temporal Fusion Diffusion Graph Convolutional Network for Traffic Prediction

被引:8
|
作者
Cui, Zhengyan [1 ]
Zhang, Junjun [1 ]
Noh, Giseop [2 ]
Park, Hyun Jun [2 ]
机构
[1] Cheongju Univ, Dept Comp Informat Engn, Cheongju 28503, South Korea
[2] Cheongju Univ, Div Software Convergence, Cheongju 28503, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 05期
关键词
traffic prediction; spatio-temporal prediction; graph convolutional network; temporal convolutional network; multi-head attention; NEURAL-NETWORKS; FLOW;
D O I
10.3390/app12052688
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traffic prediction is a popular research topic in the field of Intelligent Transportation System (ITS), as it can allocate resources more reasonably, relieve traffic congestion, and improve road traffic efficiency. Graph neural networks are widely used in traffic prediction because they are good at dealing with complex nonlinear structures. Existing traffic prediction studies use distance-based graphs to represent spatial relationships, which ignores the deep connections between non-adjacent spatio-temporal information. The use of a simple approach to fuse spatio-temporal information is not conducive to obtaining long-term deep spatio-temporal dependencies. Therefore, we propose a new deep learning model Multi-Stage Spatio-Temporal Fusion Diffusion Graph Convolutional Network (MFDGCN). It generates multiple static and dynamic spatio-temporal association graphs to enhance features and adopts the multi-stage hybrid spatio-temporal fusion method. This promotes the effective fusion of a spatio-temporal multimodal and uses the diffuse convolution method to model the graph structure and time series in traffic prediction, respectively. The model can better predict both long and short-term traffic simultaneously. We evaluated MFDGCN using real road network traffic data and it shows good performance.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] MSTDFGRN: A Multi-view Spatio-Temporal Dynamic Fusion Graph Recurrent Network for traffic flow prediction
    Yang, Shiyu
    Wu, Qunyong
    Wang, Yuhang
    Zhou, Zhan
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [12] Adaptive Spatio-Temporal Convolutional Network for Traffic Prediction
    Zhang, Mingyang
    Li, Yong
    Sun, Funing
    Guo, Diansheng
    Hui, Pan
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1475 - 1480
  • [13] Dynamic traffic correlations based spatio-temporal graph convolutional network for urban traffic prediction
    Xu, Yuanbo
    Cai, Xiao
    Wang, En
    Liu, Wenbin
    Yang, Yongjian
    Yang, Funing
    INFORMATION SCIENCES, 2023, 621 : 580 - 595
  • [14] Probabilistic spatio-temporal graph convolutional network for traffic forecasting
    Karim, Atkia Akila
    Nower, Naushin
    APPLIED INTELLIGENCE, 2024, : 7070 - 7085
  • [15] Spatio-Temporal Memory Augmented Multi-Level Attention Network for Traffic Prediction
    Liu, Yan
    Guo, Bin
    Meng, Jingxiang
    Zhang, Daqing
    Yu, Zhiwen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2643 - 2658
  • [16] Periodic Shift and Event-aware Spatio-Temporal Graph Convolutional Network for Traffic Congestion Prediction
    Li, Fuxian
    Yan, Huan
    Sui, Hongjie
    Wang, Deng
    Zuo, Fan
    Liu, Yue
    Li, Yong
    Jin, Depeng
    31ST ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2023, 2023, : 270 - 279
  • [17] A Freeway Traffic Flow Prediction Model Based on a Generalized Dynamic Spatio-Temporal Graph Convolutional Network
    Gan, Rui
    An, Bocheng
    Li, Linheng
    Qu, Xu
    Ran, Bin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 13682 - 13693
  • [18] MGCN: Dynamic Spatio-Temporal Multi-Graph Convolutional Neural Network
    Hu, Jia
    Lin, Xianghong
    Wang, Chu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [19] SAX-STGCN: Dynamic Spatio-Temporal Graph Convolutional Networks for Traffic Flow Prediction
    Lei, Bin
    Zhang, Peng
    Suo, Yifei
    Li, Na
    IEEE ACCESS, 2022, 10 : 107022 - 107031
  • [20] Hierarchical multi-scale spatio-temporal semantic graph convolutional network for traffic flow forecasting
    Mu, Hongfan
    Aljeri, Noura
    Boukerche, Azzedine
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2025, 238