We consider infinite dimensional Hamiltonian systems. We prove the existence of "Cantor manifolds" of elliptic tori-of any finite higher dimension-accumulating on a given elliptic KAM torus. Then, close to an elliptic equilibrium, we show the existence of Cantor manifolds of elliptic tori which are "branching" points of other Cantor manifolds of higher dimensional tori. We also answer to a conjecture of Bourgain, proving the existence of invariant elliptic tori with tangential frequency along a pre-assigned direction. The proofs are based on an improved KAM theorem. Its main advantages are an explicit characterization of the Cantor set of parameters and weaker smallness conditions on the perturbation. We apply these results to the nonlinear wave equation.
机构:
Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Berti, M.
Bolle, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Avignon & Pays de Vaucluse, Lab Anal Non Lineaire & Geometrie, EA 2151, F-84018 Avignon, FranceUniv Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Bolle, P.
Procesi, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Procesi, M.
[J].
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE,
2010,
27
(01):
: 377
-
399
机构:
Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Berti, M.
Bolle, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Avignon & Pays de Vaucluse, Lab Anal Non Lineaire & Geometrie, EA 2151, F-84018 Avignon, FranceUniv Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Bolle, P.
Procesi, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Procesi, M.
[J].
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE,
2010,
27
(01):
: 377
-
399