NONPARAMETRIC COVARIATE-ADJUSTED REGRESSION

被引:64
作者
Delaigle, Aurore [1 ,2 ]
Hall, Peter
Zhou, Wen-Xin [1 ,2 ,3 ]
机构
[1] Univ Melbourne, Australian Res Council Ctr Excellence Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Discontinuities; local linear estimator; multiplicative distortion; Nadaraya-Watson estimator; nonparametric smoothing; predictors; VARYING COEFFICIENT MODELS; ERRORS-IN-VARIABLES; CONVERGENCE; DISEASE; RATES;
D O I
10.1214/16-AOS1442
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider nonparametric estimation of a regression curve when the data are observed with multiplicative distortion which depends on an observed confounding variable. We suggest several estimators, ranging from a relatively simple one that relies on restrictive assumptions usually made in the literature, to a sophisticated piecewise approach that involves reconstructing a smooth curve from an estimator of a constant multiple of its absolute value, and which can be applied in much more general scenarios. We show that, although our nonparametric estimators are constructed from predictors of the unobserved undistorted data, they have the same first-order asymptotic properties as the standard estimators that could be computed if the undistorted data were available. We illustrate the good numerical performance of our methods on both simulated and real datasets.
引用
收藏
页码:2190 / 2220
页数:31
相关论文
共 32 条
[1]  
[Anonymous], 1990, MONOGRAPHS STAT APPL
[2]  
[Anonymous], 1996, MONOGRAPHS STAT APPL
[3]  
BUJA A, 1989, ANN STAT, V17, P453, DOI 10.1214/aos/1176347115
[4]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[5]  
Chetverikov D., 2012, ARXIV12010167
[6]   COVARIATE-ADJUSTED NONLINEAR REGRESSION [J].
Cui, Xia ;
Guo, Wensheng ;
Lin, Lu ;
Zhu, Lixing .
ANNALS OF STATISTICS, 2009, 37 (04) :1839-1870
[7]  
Delaigle A., 2016, NONPARAMETRIC COVA S, DOI [10.1214/16-AOS1442SUPP, DOI 10.1214/16-AOS1442SUPP]
[8]   A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem [J].
Delaigle, Aurore ;
Fan, Jianqing ;
Carroll, Raymond J. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (485) :348-359
[9]   Multiscale testing of qualitative hypotheses [J].
Dümbgen, L ;
Spokoiny, VG .
ANNALS OF STATISTICS, 2001, 29 (01) :124-152
[10]   NONPARAMETRIC REGRESSION WITH ERRORS-IN-VARIABLES [J].
FAN, JQ ;
TRUONG, YK .
ANNALS OF STATISTICS, 1993, 21 (04) :1900-1925