The Boundary-Element Approach to Modeling the Dynamics of Poroelastic Bodies

被引:1
|
作者
Igumnov, Leonid [1 ]
Litvinchuk, Svetlana [1 ]
Ipatov, Aleksandr [1 ]
Iuzhina, Tatiana [1 ]
机构
[1] Lobachevsky State Univ Nizhni Novgorod, Res Inst Mech, 23 Prospekt Gagarina Gagarin Ave,BLDG 6, Nizhnii Novgorod 603950, Russia
关键词
Poroelasticity; Boundary element method (BEM); Boundary integral equation (BIE); Laplace transform inversion; Durbin's algorithm; NUMERICAL INVERSION;
D O I
10.1007/978-3-030-21894-2_57
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present paper is dedicated to dynamic behavior of poroelastic solids. Biot's model of poroelastic media with four base functions is employed in order to describe wave propagation process, base functions are skeleton displacements and pore pressure of the fluid filler. In order to study the boundary-value problem boundary integral equations (BIE) method is applied, and to find their solutions boundary element method (BEM) for obtaining numerical solutions. The solution of the original problem is constructed in Laplace transforms, with the subsequent application of the algorithm for numerical inversion. The numerical scheme is based on the Green-Betty-Somigliana formula. To introduce BE-discretization, we consider the regularized boundary-integral equation. The collocation method is applied. As a result, systems of linear algebraic equations will be formed and can be solved with the parallel calculations usage. Modified Durbin's algorithm of numerical inversion of Laplace transform is applied to perform solution in time domain. A problem of the three-dimensional poroelastic prismatic solid clamped at one end, and subjected to uniaxial and uniform impact loading and a problem of poroelastic cube with cavity subjected to a normal internal pressure are considered.
引用
收藏
页码:311 / 315
页数:5
相关论文
共 50 条