Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications

被引:16
作者
Dragomir, S. S. [1 ,2 ]
机构
[1] Victoria Univ, Sch Sci & Engn, Melbourne, MC 8001, Australia
[2] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
关键词
Riemann-Stieltjes integral; Trapezoidal quadrature rule; Selfadjoint operators; Functions of selfadjoint operators; Spectral representation; Inequalities for selfadjoint operators;
D O I
10.1016/j.mcm.2011.02.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we provide sharp bounds for the error in approximating the Riemann-Stieltjes integral integral(b)(a)f(t)du(t) by the trapezoidal rule f(a) + f (b)/2 . [u(b) -u(a)] under various assumptions for the integrand f and the integrator u for which the above integral exists. Applications for continuous functions of selfadjoint operators in Hilbert spaces are provided as well. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:243 / 260
页数:18
相关论文
共 1 条
  • [1] Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
    Wang, Xinran
    Ouyang, Yijian
    Li, Xiaolin
    Wang, Hailiang
    Guo, Jing
    Dai, Hongjie
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (20)