Rational solutions and rogue waves of the generalized (2+1)-dimensional Kadomtsev-Petviashvili equation

被引:3
作者
Xie, Yingying [1 ]
Yan, Yongsheng [2 ]
Li, Lingfei [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Northwest Univ, Sch Econ & Management, Xian 710127, Peoples R China
关键词
Bilinear form; Rational solution; Rogue wave; Soliton; Symbolic computation; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; LUMP SOLUTIONS; WATER; STRIPE;
D O I
10.1016/j.cjph.2021.11.010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There is fundamental and applicative interest in finding rogue wave solutions that "appears from nowhere and disappears without a trace". Here, we analytically derived multi-order rogue wave solutions for a generalized (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation through its bilinear form and symbolic computation. These solutions comprise four independent solutions of the bilinear equation and depend on two arbitrary parameters, which can be used to shape the appearance of the wave. Moreover, we have looked into the inner mechanism between the polynomial F-n and the rogue wave solution u(n).
引用
收藏
页码:2047 / 2059
页数:13
相关论文
共 32 条
[1]   SOLITONS AND RATIONAL SOLUTIONS OF NON-LINEAR EVOLUTION EQUATIONS [J].
ABLOWITZ, MJ ;
SATSUMA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2180-2186
[2]   Extreme waves that appear from nowhere: On the nature of rogue waves [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICS LETTERS A, 2009, 373 (25) :2137-2145
[3]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[4]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[5]   Are rogue waves robust against perturbations? [J].
Ankiewicz, Adrian ;
Devine, N. ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2009, 373 (43) :3997-4000
[6]  
[Anonymous], 1968, J Appl Mech Tech Phys, DOI DOI 10.1007/BF00913182
[7]   Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation [J].
Azzouzi, F. ;
Triki, H. ;
Mezghiche, K. ;
El Akrmi, A. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (03) :1304-1307
[8]   Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin [J].
Baronio, Fabio ;
Wabnitz, Stefan ;
Kodama, Yuji .
PHYSICAL REVIEW LETTERS, 2016, 116 (17)
[9]   Existence of Dark Soliton Solutions of the Cubic Nonlinear Schrodinger Equation with Periodic Inhomogeneous Nonlinearity [J].
Belmonte-Beitia, Juan ;
Torres, Pedro J. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) :65-72
[10]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&