In situ gelation regulating micro-electric fields to induce Li deposition in quasi-solid-state lithium metal batteries

被引:14
作者
Wang, Qiyu [1 ]
Xu, Xiangqun [1 ]
Hong, Bo [1 ,2 ]
Bai, Maohui [1 ]
Li, Jie [1 ]
Zhang, Zhian [1 ]
Lai, Yanqing [1 ,2 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Minist Educ, Engn Res Ctr Adv Battery Mat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
GEL POLYMER ELECTROLYTE;
D O I
10.1039/d1ta09435a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quasi-solid-state lithium metal batteries hold great potential for use in next generation energy systems due to their high energy capacity and safety. However, these systems still suffer from incompatible interphases and limited cycling performance due to Li dendrite growth. Considering this, nonpolar triallyl cyanurate with a ring-centred -C = N coupled structure with pentaerythritol tetraacrylate as a cross-linking agents was applied in the in situ synthesis of gel polymer electrolyte (GPE). The GPE displays high ionic conductivity (7.93 mS cm(-1)) at room temperature and high stability towards a Li metal anode. Furthermore, the micro-electric field created by triallyl cyanurate (TAC) after polymerization provides uniform adsorption sites for Li+ flow and induces even distribution, which ensures a long cycling life (700 cycles) with a capacity retention of 80.6% for a LiFePO4 vertical bar GPE vertical bar Li battery at 1C. The design of the polymer skeleton provides new insights into solid-state battery optimization different from the intrinsic properties of the electrolyte. This polymeric electrolyte also allows for new opportunities to practically manufacture lithium metal batteries.
引用
收藏
页码:2907 / 2916
页数:10
相关论文
共 38 条
[1]   Defect-rich carbon nitride as electrolyte additive for in-situ electrode interface modification in lithium metal battery [J].
Bai, Maohui ;
Hong, Bo ;
Zhang, Kun ;
Yuan, Kai ;
Xie, Keyu ;
Wei, Weifeng ;
Lai, Yanqing .
CHEMICAL ENGINEERING JOURNAL, 2021, 407
[2]   A Scalable Approach to Dendrite-Free Lithium Anodes via Spontaneous Reduction of Spray-Coated Graphene Oxide Layers [J].
Bai, Maohui ;
Xie, Keyu ;
Yuan, Kai ;
Zhang, Kun ;
Li, Nan ;
Shen, Chao ;
Lai, Yanqing ;
Vajtai, Robert ;
Ajayan, Pulickel ;
Wei, Bingqing .
ADVANCED MATERIALS, 2018, 30 (29)
[3]   An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes [J].
Bok, Taesoo ;
Cho, Sung-Ju ;
Choi, Sinho ;
Choi, Keun-Ho ;
Park, Hyungmin ;
Lee, Sang-Young ;
Park, Soojin .
RSC ADVANCES, 2016, 6 (09) :6960-6966
[4]   Perspective on density functional theory [J].
Burke, Kieron .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (15)
[5]   Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries [J].
Chen, Jiahua ;
Yang, Zheng ;
Liu, Guohua ;
Li, Cheng ;
Yi, Jingsi ;
Fan, Ming ;
Tan, Huaping ;
Lu, Ziheng ;
Yang, Chunlei .
ENERGY STORAGE MATERIALS, 2020, 25 :305-312
[6]   Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems [J].
Cho, Yoon-Gyo ;
Hwang, Chihyun ;
Cheong, Do Sol ;
Kim, Young-Soo ;
Song, Hyun-Kon .
ADVANCED MATERIALS, 2019, 31 (20)
[7]   A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries [J].
Dai, Kuan ;
Ma, Cheng ;
Feng, Yiming ;
Zhou, Liangjun ;
Kuang, Guichao ;
Zhang, Yun ;
Lai, Yanqing ;
Cui, Xinwei ;
Wei, Weifeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (31) :18547-18557
[8]   A Dual-Salt Gel Polymer Electrolyte with 3D Cross-Linked Polymer Network for Dendrite-Free Lithium Metal Batteries [J].
Fan, Wei ;
Li, Nian-Wu ;
Zhang, Xiuling ;
Zhao, Shuyu ;
Cao, Ran ;
Yin, Yingying ;
Xing, Yi ;
Wang, Jiaona ;
Guo, Yu-Guo ;
Li, Congju .
ADVANCED SCIENCE, 2018, 5 (09)
[9]  
Grimme S., 2010, J. Chem. Phys., V132, DOI DOI 10.1063/1.3382344
[10]   In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries [J].
Guan, Xiang ;
Wu, Qingping ;
Zhang, Xiaowan ;
Guo, Xuhong ;
Li, Chilin ;
Xu, Jun .
CHEMICAL ENGINEERING JOURNAL, 2020, 382