Diameter controlled growth of SWCNTs using Ru as catalyst precursors coupled with atomic hydrogen treatment

被引:13
作者
Bouanis, F. Z. [1 ,2 ]
Florea, I. [2 ]
Bouanis, M. [3 ]
Muller, D. [4 ]
Nyassi, A. [3 ]
Le Normand, F. [4 ]
Pribat, D. [2 ,5 ]
机构
[1] Univ Paris Est, IFSTTAR, Blvd Newton, F-77420 Champs Sur Marne, France
[2] Univ Paris Saclay, Ecole Polytech, UMR CNRS 7647, Lab Phys Interfaces & Thin Films, F-91128 Palaiseau, France
[3] Univ Chouaib Doukkali, Fac Sci, LCCM, BP 20, M-24000 El Jadida, Morocco
[4] Univ Strasbourg, CNRS, ICube Lab Engn Comp Sci & Imagery, 23 Rue Loess, F-67037 Strasbourg, France
[5] Sungkyunkwan Univ, Dept Energy Sci, Suwon, South Korea
关键词
Single walled carbon nanotubes (SWCNTs); Double hot filament chemical vapor deposition (d-HFCVD); FIB; HR-TEM; Molecular beam epitaxy (MBE); Field effect transistors (FETs); WALLED CARBON NANOTUBES; CHIRALITY; NANOPARTICLES; TEMPERATURE;
D O I
10.1016/j.cej.2017.09.073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, we present a practical approach for controlling single walled carbon nanotubes (SWCNTs) diameter distribution through thin film Ru catalyst, coupled with hydrogen pre-treatment. Uniform and stable Ru nanoclusters were obtained after dewetting the Ru thin films under atomic hydrogen pre-treatment. SWCNTs were synthetized by double hot filament chemical vapor deposition (d-HFCVD) on SiO2/Si substrates at different temperatures. We found that the temperature is an important synthesis parameter that influences the diameter distribution of the final SWCNTs. Statistical analysis of the Raman radial breathing modes evidences the growth of highly enriched semi-conducting SWCNTs (about 90%) with narrow diameter distribution that correlates directly with the catalyst particle size distribution. Electrical measurement results on as-grown SWCNTs show good thin-film transistor characteristics.
引用
收藏
页码:92 / 101
页数:10
相关论文
共 32 条
[1]   Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes [J].
Bandow, S ;
Asaka, S ;
Saito, Y ;
Rao, AM ;
Grigorian, L ;
Richter, E ;
Eklund, PC .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3779-3782
[2]   Minimizing damage during FIB sample preparation of soft materials [J].
Bassim, N. D. ;
De Gregorio, B. T. ;
Kilcoyne, A. L. D. ;
Scott, K. ;
Chou, T. ;
Wirick, S. ;
Cody, G. ;
Stroud, R. M. .
JOURNAL OF MICROSCOPY, 2012, 245 (03) :288-301
[3]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[4]   Direct Synthesis and Integration of Individual, Diameter-Controlled Single-Walled Nanotubes (SWNTs) [J].
Bouanis, Fatima Z. ;
Cojocaru, Costel S. ;
Huc, Vincent ;
Norman, Evgeny ;
Chaigneau, Marc ;
Maurice, Jean-Luc ;
Mallah, Talal ;
Pribat, Didier .
CHEMISTRY OF MATERIALS, 2014, 26 (17) :5074-5082
[5]   High-quality single-walled carbon nanotubes synthesis by hot filament CVD on Ru nanoparticle catalyst [J].
Bouanis, Fatima Z. ;
Baraton, Laurent ;
Huc, Vincent ;
Pribat, Didier ;
Cojocaru, Costel S. .
THIN SOLID FILMS, 2011, 519 (14) :4594-4597
[6]  
Chiang WH, 2009, NAT MATER, V8, P882, DOI [10.1038/NMAT2531, 10.1038/nmat2531]
[7]   Delivery of catalytic metal species onto surfaces with dendrimer carriers for the synthesis of carbon nanotubes with narrow diameter distribution [J].
Choi, HC ;
Kim, W ;
Wang, DW ;
Dai, HJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (48) :12361-12365
[8]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709
[9]   Carbon nanotubes: Synthesis, integration, and properties [J].
Dai, HJ .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1035-1044
[10]  
Dai HJ, 2001, TOP APPL PHYS, V80, P29