INTEGRABILITY AND LYAPUNOV EXPONENTS

被引:7
作者
Hammerlindl, Andy [1 ]
机构
[1] Inst Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
Integrability; Lyapunov exponents; PARTIALLY HYPERBOLIC DIFFEOMORPHISMS; LIPSCHITZ DISTRIBUTIONS; STABLE ERGODICITY; ACCESSIBILITY; MANIFOLDS; SYSTEMS;
D O I
10.3934/jmd.2011.5.107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A smooth distribution, invariant under a dynamical system, integrates to give an invariant foliation, unless certain resonance conditions are present.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 17 条
[1]  
[Anonymous], 1974, Izv. Akad. Nauk SSSR Ser. Mat.
[2]  
[Anonymous], 1977, LECT NOTES MATH
[3]  
Anosov D.V., 1969, P STEKLOV I MATH, V90
[4]   Center manifolds for nonuniformly partially hyperbolic diffeomorphisms [J].
Barreira, L ;
Valls, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (12) :1693-1715
[5]  
Burns K, 2008, DISCRETE CONT DYN S, V22, P89
[6]  
Burns K, 2008, DISCRETE CONT DYN-A, V22, P75
[7]   On the ergodicity of partially hyperbolic systems [J].
Burns, Keith ;
Wilkinson, Amie .
ANNALS OF MATHEMATICS, 2010, 171 (01) :451-489
[8]   The parameterization method for invariant manifolds I:: Manifolds associated to non-resonant subspaces [J].
Cabré, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :283-328
[9]   Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle [J].
Hertz, F. Rodriguez ;
Hertz, M. A. Rodriguez ;
Ures, R. .
INVENTIONES MATHEMATICAE, 2008, 172 (02) :353-381
[10]  
MANE R, 1987, ERGEBNISSE MATH IH 3, V8