Tensor-product approximation to operators and functions in high dimensions

被引:61
作者
Hackbusch, Wolfgang [1 ]
Khoromskij, Boris N. [1 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
D O I
10.1016/j.jco.2007.03.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent papers tensor-product structured Nystrom and Galerkin-type approximations of certain multidimensional integral operators have been introduced and analysed. In the present paper, we focus on the analysis of the collocation-type schemes with respect to the tensor-product basis in a high spatial dimension d. Approximations up to an accuracy O(N-alpha/d) are proven to have the storage complexity O(dN(1/d) log(q) N) with q independent of d, where N is the discrete problem size. In particular, we apply the theory to a collocation discretisation of the Newton potential with the kernel 1/vertical bar x-y vertical bar, x, y is an element of R-d, d >= 3. Numerical illustrations are given in the case of d = 3. (c) 2007 Published by Elsevier Inc.
引用
收藏
页码:697 / 714
页数:18
相关论文
共 24 条
  • [11] Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. Part I. Separable approximation of multi-variate functions
    Hackbusch, W
    Khoromskij, BN
    [J]. COMPUTING, 2006, 76 (3-4) : 177 - 202
  • [12] Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. Part II. HKT representation of certain operators
    Hackbusch, W
    Khoromskij, BN
    [J]. COMPUTING, 2006, 76 (3-4) : 203 - 225
  • [13] Hierarchical Kronecker tensor-product approximations
    Hackbusch, W.
    Khoromskij, B.N.
    Tyrtyshnikov, E.E.
    [J]. Journal of Numerical Mathematics, 2005, 13 (02) : 119 - 156
  • [14] HACKBUSCH W, 2005, APPROXIMATE ITERATIO, V112
  • [15] Harshman R. A., 1970, UCLA Work. Papers Phonetics, DOI DOI 10.1134/S0036023613040165
  • [16] Khoromskij B. N., 2006, Computational Methods in Applied Mathematics, V6, P194, DOI 10.2478/cmam-2006-0010
  • [17] KHOROMSKIJ BN, 2005, IN PRESS MATH COMP
  • [18] Orthogonal tensor decompositions
    Kolda, TG
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) : 243 - 255
  • [19] Lubich C, 2005, MATH COMPUT, V74, P765
  • [20] Stenger F., 1993, NUMERICAL METHODS BA